|
|
|
/*
|
|
|
|
* Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exception handlers at EL3, their priority levels, and management.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
|
|
|
|
#include <bl31/ehf.h>
|
|
|
|
#include <bl31/interrupt_mgmt.h>
|
|
|
|
#include <context.h>
|
|
|
|
#include <common/debug.h>
|
|
|
|
#include <drivers/arm/gic_common.h>
|
|
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
|
|
#include <lib/el3_runtime/cpu_data.h>
|
|
|
|
#include <lib/el3_runtime/pubsub_events.h>
|
|
|
|
#include <plat/common/platform.h>
|
|
|
|
|
|
|
|
/* Output EHF logs as verbose */
|
|
|
|
#define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__)
|
|
|
|
|
|
|
|
#define EHF_INVALID_IDX (-1)
|
|
|
|
|
|
|
|
/* For a valid handler, return the actual function pointer; otherwise, 0. */
|
|
|
|
#define RAW_HANDLER(h) \
|
|
|
|
((ehf_handler_t) ((((h) & EHF_PRI_VALID_) != 0U) ? \
|
|
|
|
((h) & ~EHF_PRI_VALID_) : 0U))
|
|
|
|
|
|
|
|
#define PRI_BIT(idx) (((ehf_pri_bits_t) 1u) << (idx))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert index into secure priority using the platform-defined priority bits
|
|
|
|
* field.
|
|
|
|
*/
|
|
|
|
#define IDX_TO_PRI(idx) \
|
|
|
|
((((unsigned) idx) << (7u - exception_data.pri_bits)) & 0x7fU)
|
|
|
|
|
|
|
|
/* Check whether a given index is valid */
|
|
|
|
#define IS_IDX_VALID(idx) \
|
|
|
|
((exception_data.ehf_priorities[idx].ehf_handler & EHF_PRI_VALID_) != 0U)
|
|
|
|
|
|
|
|
/* Returns whether given priority is in secure priority range */
|
|
|
|
#define IS_PRI_SECURE(pri) (((pri) & 0x80U) == 0U)
|
|
|
|
|
|
|
|
/* To be defined by the platform */
|
|
|
|
extern const ehf_priorities_t exception_data;
|
|
|
|
|
|
|
|
/* Translate priority to the index in the priority array */
|
|
|
|
static unsigned int pri_to_idx(unsigned int priority)
|
|
|
|
{
|
|
|
|
unsigned int idx;
|
|
|
|
|
|
|
|
idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits);
|
|
|
|
assert(idx < exception_data.num_priorities);
|
|
|
|
assert(IS_IDX_VALID(idx));
|
|
|
|
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return whether there are outstanding priority activation */
|
|
|
|
static bool has_valid_pri_activations(pe_exc_data_t *pe_data)
|
|
|
|
{
|
|
|
|
return pe_data->active_pri_bits != 0U;
|
|
|
|
}
|
|
|
|
|
|
|
|
static pe_exc_data_t *this_cpu_data(void)
|
|
|
|
{
|
|
|
|
return &get_cpu_data(ehf_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the current priority index of this CPU. If no priority is active,
|
|
|
|
* return EHF_INVALID_IDX.
|
|
|
|
*/
|
|
|
|
static int get_pe_highest_active_idx(pe_exc_data_t *pe_data)
|
|
|
|
{
|
|
|
|
if (!has_valid_pri_activations(pe_data))
|
|
|
|
return EHF_INVALID_IDX;
|
|
|
|
|
|
|
|
/* Current priority is the right-most bit */
|
|
|
|
return (int) __builtin_ctz(pe_data->active_pri_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark priority active by setting the corresponding bit in active_pri_bits and
|
|
|
|
* programming the priority mask.
|
|
|
|
*
|
|
|
|
* This API is to be used as part of delegating to lower ELs other than for
|
|
|
|
* interrupts; e.g. while handling synchronous exceptions.
|
|
|
|
*
|
|
|
|
* This API is expected to be invoked before restoring context (Secure or
|
|
|
|
* Non-secure) in preparation for the respective dispatch.
|
|
|
|
*/
|
|
|
|
void ehf_activate_priority(unsigned int priority)
|
|
|
|
{
|
|
|
|
int cur_pri_idx;
|
|
|
|
unsigned int old_mask, run_pri, idx;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Query interrupt controller for the running priority, or idle priority
|
|
|
|
* if no interrupts are being handled. The requested priority must be
|
|
|
|
* less (higher priority) than the active running priority.
|
|
|
|
*/
|
|
|
|
run_pri = plat_ic_get_running_priority();
|
|
|
|
if (priority >= run_pri) {
|
|
|
|
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
|
|
|
|
run_pri, priority);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there were priority activations already, the requested priority
|
|
|
|
* must be less (higher priority) than the current highest priority
|
|
|
|
* activation so far.
|
|
|
|
*/
|
|
|
|
cur_pri_idx = get_pe_highest_active_idx(pe_data);
|
|
|
|
idx = pri_to_idx(priority);
|
|
|
|
if ((cur_pri_idx != EHF_INVALID_IDX) &&
|
|
|
|
(idx >= ((unsigned int) cur_pri_idx))) {
|
|
|
|
ERROR("Activation priority mismatch: req=0x%x current=0x%x\n",
|
|
|
|
priority, IDX_TO_PRI(cur_pri_idx));
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the bit corresponding to the requested priority */
|
|
|
|
pe_data->active_pri_bits |= PRI_BIT(idx);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program priority mask for the activated level. Check that the new
|
|
|
|
* priority mask is setting a higher priority level than the existing
|
|
|
|
* mask.
|
|
|
|
*/
|
|
|
|
old_mask = plat_ic_set_priority_mask(priority);
|
|
|
|
if (priority >= old_mask) {
|
|
|
|
ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n",
|
|
|
|
priority, old_mask);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is the first activation, save the priority mask. This will be
|
|
|
|
* restored after the last deactivation.
|
|
|
|
*/
|
|
|
|
if (cur_pri_idx == EHF_INVALID_IDX)
|
|
|
|
pe_data->init_pri_mask = (uint8_t) old_mask;
|
|
|
|
|
|
|
|
EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark priority inactive by clearing the corresponding bit in active_pri_bits,
|
|
|
|
* and programming the priority mask.
|
|
|
|
*
|
|
|
|
* This API is expected to be used as part of delegating to to lower ELs other
|
|
|
|
* than for interrupts; e.g. while handling synchronous exceptions.
|
|
|
|
*
|
|
|
|
* This API is expected to be invoked after saving context (Secure or
|
|
|
|
* Non-secure), having concluded the respective dispatch.
|
|
|
|
*/
|
|
|
|
void ehf_deactivate_priority(unsigned int priority)
|
|
|
|
{
|
|
|
|
int cur_pri_idx;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
unsigned int old_mask, run_pri, idx;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Query interrupt controller for the running priority, or idle priority
|
|
|
|
* if no interrupts are being handled. The requested priority must be
|
|
|
|
* less (higher priority) than the active running priority.
|
|
|
|
*/
|
|
|
|
run_pri = plat_ic_get_running_priority();
|
|
|
|
if (priority >= run_pri) {
|
|
|
|
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
|
|
|
|
run_pri, priority);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deactivation is allowed only when there are priority activations, and
|
|
|
|
* the deactivation priority level must match the current activated
|
|
|
|
* priority.
|
|
|
|
*/
|
|
|
|
cur_pri_idx = get_pe_highest_active_idx(pe_data);
|
|
|
|
idx = pri_to_idx(priority);
|
|
|
|
if ((cur_pri_idx == EHF_INVALID_IDX) ||
|
|
|
|
(idx != ((unsigned int) cur_pri_idx))) {
|
|
|
|
ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n",
|
|
|
|
priority, IDX_TO_PRI(cur_pri_idx));
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear bit corresponding to highest priority */
|
|
|
|
pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1u);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Restore priority mask corresponding to the next priority, or the
|
|
|
|
* one stashed earlier if there are no more to deactivate.
|
|
|
|
*/
|
|
|
|
cur_pri_idx = get_pe_highest_active_idx(pe_data);
|
|
|
|
if (cur_pri_idx == EHF_INVALID_IDX)
|
|
|
|
old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask);
|
|
|
|
else
|
|
|
|
old_mask = plat_ic_set_priority_mask(priority);
|
|
|
|
|
|
|
|
if (old_mask > priority) {
|
|
|
|
ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n",
|
|
|
|
priority, old_mask);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data));
|
|
|
|
}
|
|
|
|
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
/*
|
|
|
|
* After leaving Non-secure world, stash current Non-secure Priority Mask, and
|
|
|
|
* set Priority Mask to the highest Non-secure priority so that Non-secure
|
|
|
|
* interrupts cannot preempt Secure execution.
|
|
|
|
*
|
|
|
|
* If the current running priority is in the secure range, or if there are
|
|
|
|
* outstanding priority activations, this function does nothing.
|
|
|
|
*
|
|
|
|
* This function subscribes to the 'cm_exited_normal_world' event published by
|
|
|
|
* the Context Management Library.
|
|
|
|
*/
|
|
|
|
static void *ehf_exited_normal_world(const void *arg)
|
|
|
|
{
|
|
|
|
unsigned int run_pri;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
|
|
|
|
/* If the running priority is in the secure range, do nothing */
|
|
|
|
run_pri = plat_ic_get_running_priority();
|
|
|
|
if (IS_PRI_SECURE(run_pri))
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
/* Do nothing if there are explicit activations */
|
|
|
|
if (has_valid_pri_activations(pe_data))
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
assert(pe_data->ns_pri_mask == 0u);
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
pe_data->ns_pri_mask =
|
|
|
|
(uint8_t) plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY);
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
/* The previous Priority Mask is not expected to be in secure range */
|
|
|
|
if (IS_PRI_SECURE(pe_data->ns_pri_mask)) {
|
|
|
|
ERROR("Priority Mask (0x%x) already in secure range\n",
|
|
|
|
pe_data->ns_pri_mask);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask,
|
|
|
|
GIC_HIGHEST_NS_PRIORITY);
|
|
|
|
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Conclude Secure execution and prepare for return to Non-secure world. Restore
|
|
|
|
* the Non-secure Priority Mask previously stashed upon leaving Non-secure
|
|
|
|
* world.
|
|
|
|
*
|
|
|
|
* If there the current running priority is in the secure range, or if there are
|
|
|
|
* outstanding priority activations, this function does nothing.
|
|
|
|
*
|
|
|
|
* This function subscribes to the 'cm_entering_normal_world' event published by
|
|
|
|
* the Context Management Library.
|
|
|
|
*/
|
|
|
|
static void *ehf_entering_normal_world(const void *arg)
|
|
|
|
{
|
|
|
|
unsigned int old_pmr, run_pri;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
|
|
|
|
/* If the running priority is in the secure range, do nothing */
|
|
|
|
run_pri = plat_ic_get_running_priority();
|
|
|
|
if (IS_PRI_SECURE(run_pri))
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are explicit activations, do nothing. The Priority Mask will
|
|
|
|
* be restored upon the last deactivation.
|
|
|
|
*/
|
|
|
|
if (has_valid_pri_activations(pe_data))
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
/* Do nothing if we don't have a valid Priority Mask to restore */
|
|
|
|
if (pe_data->ns_pri_mask == 0U)
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When exiting secure world, the current Priority Mask must be
|
|
|
|
* GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure
|
|
|
|
* priority mask set upon calling ehf_allow_ns_preemption()
|
|
|
|
*/
|
|
|
|
if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) &&
|
|
|
|
(old_pmr != pe_data->ns_pri_mask)) {
|
|
|
|
ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);
|
|
|
|
|
|
|
|
pe_data->ns_pri_mask = 0;
|
|
|
|
|
|
|
|
return NULL;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program Priority Mask to the original Non-secure priority such that
|
|
|
|
* Non-secure interrupts may preempt Secure execution (for example, during
|
|
|
|
* Yielding SMC calls). The 'preempt_ret_code' parameter indicates the Yielding
|
|
|
|
* SMC's return value in case the call was preempted.
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
*
|
|
|
|
* This API is expected to be invoked before delegating a yielding SMC to Secure
|
|
|
|
* EL1. I.e. within the window of secure execution after Non-secure context is
|
|
|
|
* saved (after entry into EL3) and Secure context is restored (before entering
|
|
|
|
* Secure EL1).
|
|
|
|
*/
|
|
|
|
void ehf_allow_ns_preemption(uint64_t preempt_ret_code)
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
{
|
|
|
|
cpu_context_t *ns_ctx;
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
unsigned int old_pmr __unused;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We should have been notified earlier of entering secure world, and
|
|
|
|
* therefore have stashed the Non-secure priority mask.
|
|
|
|
*/
|
|
|
|
assert(pe_data->ns_pri_mask != 0U);
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
/* Make sure no priority levels are active when requesting this */
|
|
|
|
if (has_valid_pri_activations(pe_data)) {
|
|
|
|
ERROR("PE %lx has priority activations: 0x%x\n",
|
|
|
|
read_mpidr_el1(), pe_data->active_pri_bits);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Program preempted return code to x0 right away so that, if the
|
|
|
|
* Yielding SMC was indeed preempted before a dispatcher gets a chance
|
|
|
|
* to populate it, the caller would find the correct return value.
|
|
|
|
*/
|
|
|
|
ns_ctx = cm_get_context(NON_SECURE);
|
|
|
|
assert(ns_ctx != NULL);
|
|
|
|
write_ctx_reg(get_gpregs_ctx(ns_ctx), CTX_GPREG_X0, preempt_ret_code);
|
|
|
|
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);
|
|
|
|
|
|
|
|
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);
|
|
|
|
|
|
|
|
pe_data->ns_pri_mask = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return whether Secure execution has explicitly allowed Non-secure interrupts
|
|
|
|
* to preempt itself (for example, during Yielding SMC calls).
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
*/
|
|
|
|
unsigned int ehf_is_ns_preemption_allowed(void)
|
|
|
|
{
|
|
|
|
unsigned int run_pri;
|
|
|
|
pe_exc_data_t *pe_data = this_cpu_data();
|
|
|
|
|
|
|
|
/* If running priority is in secure range, return false */
|
|
|
|
run_pri = plat_ic_get_running_priority();
|
|
|
|
if (IS_PRI_SECURE(run_pri))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If Non-secure preemption was permitted by calling
|
|
|
|
* ehf_allow_ns_preemption() earlier:
|
|
|
|
*
|
|
|
|
* - There wouldn't have been priority activations;
|
|
|
|
* - We would have cleared the stashed the Non-secure Priority Mask.
|
|
|
|
*/
|
|
|
|
if (has_valid_pri_activations(pe_data))
|
|
|
|
return 0;
|
|
|
|
if (pe_data->ns_pri_mask != 0U)
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Top-level EL3 interrupt handler.
|
|
|
|
*/
|
|
|
|
static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags,
|
|
|
|
void *handle, void *cookie)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
uint32_t intr_raw;
|
|
|
|
unsigned int intr, pri, idx;
|
|
|
|
ehf_handler_t handler;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Top-level interrupt type handler from Interrupt Management Framework
|
|
|
|
* doesn't acknowledge the interrupt; so the interrupt ID must be
|
|
|
|
* invalid.
|
|
|
|
*/
|
|
|
|
assert(id == INTR_ID_UNAVAILABLE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Acknowledge interrupt. Proceed with handling only for valid interrupt
|
|
|
|
* IDs. This situation may arise because of Interrupt Management
|
|
|
|
* Framework identifying an EL3 interrupt, but before it's been
|
|
|
|
* acknowledged here, the interrupt was either deasserted, or there was
|
|
|
|
* a higher-priority interrupt of another type.
|
|
|
|
*/
|
|
|
|
intr_raw = plat_ic_acknowledge_interrupt();
|
|
|
|
intr = plat_ic_get_interrupt_id(intr_raw);
|
|
|
|
if (intr == INTR_ID_UNAVAILABLE)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Having acknowledged the interrupt, get the running priority */
|
|
|
|
pri = plat_ic_get_running_priority();
|
|
|
|
|
|
|
|
/* Check EL3 interrupt priority is in secure range */
|
|
|
|
assert(IS_PRI_SECURE(pri));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Translate the priority to a descriptor index. We do this by masking
|
|
|
|
* and shifting the running priority value (platform-supplied).
|
|
|
|
*/
|
|
|
|
idx = pri_to_idx(pri);
|
|
|
|
|
|
|
|
/* Validate priority */
|
|
|
|
assert(pri == IDX_TO_PRI(idx));
|
|
|
|
|
|
|
|
handler = (ehf_handler_t) RAW_HANDLER(
|
|
|
|
exception_data.ehf_priorities[idx].ehf_handler);
|
|
|
|
if (handler == NULL) {
|
|
|
|
ERROR("No EL3 exception handler for priority 0x%x\n",
|
|
|
|
IDX_TO_PRI(idx));
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call registered handler. Pass the raw interrupt value to registered
|
|
|
|
* handlers.
|
|
|
|
*/
|
|
|
|
ret = handler(intr_raw, flags, handle, cookie);
|
|
|
|
|
|
|
|
return (uint64_t) ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the EL3 exception handling.
|
|
|
|
*/
|
|
|
|
void __init ehf_init(void)
|
|
|
|
{
|
|
|
|
unsigned int flags = 0;
|
|
|
|
int ret __unused;
|
|
|
|
|
|
|
|
/* Ensure EL3 interrupts are supported */
|
|
|
|
assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3) != 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure that priority water mark has enough bits to represent the
|
|
|
|
* whole priority array.
|
|
|
|
*/
|
|
|
|
assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8U));
|
|
|
|
|
|
|
|
assert(exception_data.ehf_priorities != NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bit 7 of GIC priority must be 0 for secure interrupts. This means
|
|
|
|
* platforms must use at least 1 of the remaining 7 bits.
|
|
|
|
*/
|
|
|
|
assert((exception_data.pri_bits >= 1U) ||
|
|
|
|
(exception_data.pri_bits < 8U));
|
|
|
|
|
|
|
|
/* Route EL3 interrupts when in Non-secure. */
|
|
|
|
set_interrupt_rm_flag(flags, NON_SECURE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Route EL3 interrupts when in secure, only when SPMC is not present
|
|
|
|
* in S-EL2.
|
|
|
|
*/
|
|
|
|
#if !(defined(SPD_spmd) && (SPMD_SPM_AT_SEL2 == 1))
|
|
|
|
set_interrupt_rm_flag(flags, SECURE);
|
|
|
|
#endif /* !(defined(SPD_spmd) && (SPMD_SPM_AT_SEL2 == 1)) */
|
|
|
|
|
|
|
|
/* Register handler for EL3 interrupts */
|
|
|
|
ret = register_interrupt_type_handler(INTR_TYPE_EL3,
|
|
|
|
ehf_el3_interrupt_handler, flags);
|
|
|
|
assert(ret == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Register a handler at the supplied priority. Registration is allowed only if
|
|
|
|
* a handler hasn't been registered before, or one wasn't provided at build
|
|
|
|
* time. The priority for which the handler is being registered must also accord
|
|
|
|
* with the platform-supplied data.
|
|
|
|
*/
|
|
|
|
void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler)
|
|
|
|
{
|
|
|
|
unsigned int idx;
|
|
|
|
|
|
|
|
/* Sanity check for handler */
|
|
|
|
assert(handler != NULL);
|
|
|
|
|
|
|
|
/* Handler ought to be 4-byte aligned */
|
|
|
|
assert((((uintptr_t) handler) & 3U) == 0U);
|
|
|
|
|
|
|
|
/* Ensure we register for valid priority */
|
|
|
|
idx = pri_to_idx(pri);
|
|
|
|
assert(idx < exception_data.num_priorities);
|
|
|
|
assert(IDX_TO_PRI(idx) == pri);
|
|
|
|
|
|
|
|
/* Return failure if a handler was already registered */
|
|
|
|
if (exception_data.ehf_priorities[idx].ehf_handler != EHF_NO_HANDLER_) {
|
|
|
|
ERROR("Handler already registered for priority 0x%x\n", pri);
|
|
|
|
panic();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Install handler, and retain the valid bit. We assume that the handler
|
|
|
|
* is 4-byte aligned, which is usually the case.
|
|
|
|
*/
|
|
|
|
exception_data.ehf_priorities[idx].ehf_handler =
|
|
|
|
(((uintptr_t) handler) | EHF_PRI_VALID_);
|
|
|
|
|
|
|
|
EHF_LOG("register pri=0x%x handler=%p\n", pri, handler);
|
|
|
|
}
|
BL31: Program Priority Mask for SMC handling
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
7 years ago
|
|
|
|
|
|
|
SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world);
|
|
|
|
SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world);
|