|
|
|
/*
|
|
|
|
* Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
|
|
|
|
* Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include <arch.h>
|
|
|
|
#include <arch_helpers.h>
|
|
|
|
#include <common/debug.h>
|
|
|
|
#include <common/interrupt_props.h>
|
|
|
|
#include <drivers/arm/gic600_multichip.h>
|
|
|
|
#include <drivers/arm/gic_common.h>
|
|
|
|
|
|
|
|
#include <platform_def.h>
|
|
|
|
|
|
|
|
#include "../common/gic_common_private.h"
|
|
|
|
#include "gicv3_private.h"
|
|
|
|
|
|
|
|
uintptr_t gicv3_get_multichip_base(uint32_t spi_id, uintptr_t gicd_base)
|
|
|
|
{
|
|
|
|
#if GICV3_IMPL_GIC600_MULTICHIP
|
|
|
|
if (gic600_multichip_is_initialized()) {
|
|
|
|
return gic600_multichip_gicd_base_for_spi(spi_id);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return gicd_base;
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
* This function marks the core as awake in the re-distributor and
|
|
|
|
* ensures that the interface is active.
|
|
|
|
*****************************************************************************/
|
|
|
|
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The WAKER_PS_BIT should be changed to 0
|
|
|
|
* only when WAKER_CA_BIT is 1.
|
|
|
|
*/
|
|
|
|
assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
|
|
|
|
|
|
|
|
/* Mark the connected core as awake */
|
|
|
|
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
|
|
|
|
|
|
|
|
/* Wait till the WAKER_CA_BIT changes to 0 */
|
|
|
|
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
* This function marks the core as asleep in the re-distributor and ensures
|
|
|
|
* that the interface is quiescent.
|
|
|
|
*****************************************************************************/
|
|
|
|
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
|
|
|
|
{
|
|
|
|
/* Mark the connected core as asleep */
|
|
|
|
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
|
|
|
|
|
|
|
|
/* Wait till the WAKER_CA_BIT changes to 1 */
|
|
|
|
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* This function probes the Redistributor frames when the driver is initialised
|
|
|
|
* and saves their base addresses. These base addresses are used later to
|
|
|
|
* initialise each Redistributor interface.
|
|
|
|
******************************************************************************/
|
|
|
|
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
|
|
|
|
unsigned int rdistif_num,
|
|
|
|
uintptr_t gicr_base,
|
|
|
|
mpidr_hash_fn mpidr_to_core_pos)
|
|
|
|
{
|
|
|
|
u_register_t mpidr;
|
|
|
|
unsigned int proc_num;
|
|
|
|
uint64_t typer_val;
|
|
|
|
uintptr_t rdistif_base = gicr_base;
|
|
|
|
|
|
|
|
assert(rdistif_base_addrs != NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Iterate over the Redistributor frames. Store the base address of each
|
|
|
|
* frame in the platform provided array. Use the "Processor Number"
|
|
|
|
* field to index into the array if the platform has not provided a hash
|
|
|
|
* function to convert an MPIDR (obtained from the "Affinity Value"
|
|
|
|
* field into a linear index.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
typer_val = gicr_read_typer(rdistif_base);
|
|
|
|
if (mpidr_to_core_pos != NULL) {
|
|
|
|
mpidr = mpidr_from_gicr_typer(typer_val);
|
|
|
|
proc_num = mpidr_to_core_pos(mpidr);
|
|
|
|
} else {
|
|
|
|
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
|
|
|
|
TYPER_PROC_NUM_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (proc_num < rdistif_num) {
|
|
|
|
rdistif_base_addrs[proc_num] = rdistif_base;
|
|
|
|
}
|
|
|
|
rdistif_base += gicv3_redist_size(typer_val);
|
|
|
|
} while ((typer_val & TYPER_LAST_BIT) == 0U);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to get the maximum SPI INTID + 1.
|
|
|
|
******************************************************************************/
|
|
|
|
unsigned int gicv3_get_spi_limit(uintptr_t gicd_base)
|
|
|
|
{
|
|
|
|
unsigned int spi_limit;
|
|
|
|
unsigned int typer_reg = gicd_read_typer(gicd_base);
|
|
|
|
|
|
|
|
/* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */
|
|
|
|
spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
|
|
|
|
|
|
|
|
/* Filter out special INTIDs 1020-1023 */
|
|
|
|
if (spi_limit > (MAX_SPI_ID + 1U)) {
|
|
|
|
return MAX_SPI_ID + 1U;
|
|
|
|
}
|
|
|
|
|
|
|
|
return spi_limit;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to get the maximum ESPI INTID + 1.
|
|
|
|
******************************************************************************/
|
|
|
|
unsigned int gicv3_get_espi_limit(uintptr_t gicd_base)
|
|
|
|
{
|
|
|
|
unsigned int typer_reg = gicd_read_typer(gicd_base);
|
|
|
|
|
|
|
|
/* Check if extended SPI range is implemented */
|
|
|
|
if ((typer_reg & TYPER_ESPI) != 0U) {
|
|
|
|
/*
|
|
|
|
* (maximum ESPI INTID + 1) is equal to
|
|
|
|
* 32 * (GICD_TYPER.ESPI_range + 1) + 4096
|
|
|
|
*/
|
|
|
|
return ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
|
|
|
|
TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0U;
|
|
|
|
}
|
|
|
|
#endif /* GIC_EXT_INTID */
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to configure the default attributes of (E)SPIs.
|
|
|
|
******************************************************************************/
|
|
|
|
void gicv3_spis_config_defaults(uintptr_t gicd_base)
|
|
|
|
{
|
|
|
|
unsigned int i, num_ints;
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
unsigned int num_eints;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
num_ints = gicv3_get_spi_limit(gicd_base);
|
|
|
|
INFO("Maximum SPI INTID supported: %u\n", num_ints - 1);
|
|
|
|
|
|
|
|
/* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */
|
|
|
|
for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) {
|
|
|
|
gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
num_eints = gicv3_get_espi_limit(gicd_base);
|
|
|
|
if (num_eints != 0U) {
|
|
|
|
INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1);
|
|
|
|
|
|
|
|
for (i = MIN_ESPI_ID; i < num_eints;
|
|
|
|
i += (1U << IGROUPR_SHIFT)) {
|
|
|
|
gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
INFO("ESPI range is not implemented.\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Setup the default (E)SPI priorities doing four at a time */
|
|
|
|
for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) {
|
|
|
|
gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
for (i = MIN_ESPI_ID; i < num_eints;
|
|
|
|
i += (1U << IPRIORITYR_SHIFT)) {
|
|
|
|
gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
|
|
* Treat all (E)SPIs as level triggered by default, write 16 at a time
|
|
|
|
*/
|
|
|
|
for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) {
|
|
|
|
gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) {
|
|
|
|
gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to configure properties of secure (E)SPIs
|
|
|
|
******************************************************************************/
|
|
|
|
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
|
|
|
|
const interrupt_prop_t *interrupt_props,
|
|
|
|
unsigned int interrupt_props_num)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
const interrupt_prop_t *current_prop;
|
|
|
|
unsigned long long gic_affinity_val;
|
|
|
|
unsigned int ctlr_enable = 0U;
|
|
|
|
|
|
|
|
/* Make sure there's a valid property array */
|
|
|
|
if (interrupt_props_num > 0U) {
|
|
|
|
assert(interrupt_props != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0U; i < interrupt_props_num; i++) {
|
|
|
|
current_prop = &interrupt_props[i];
|
|
|
|
|
|
|
|
unsigned int intr_num = current_prop->intr_num;
|
|
|
|
uintptr_t multichip_gicd_base;
|
|
|
|
|
|
|
|
/* Skip SGI, (E)PPI and LPI interrupts */
|
|
|
|
if (!IS_SPI(intr_num)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
multichip_gicd_base =
|
|
|
|
gicv3_get_multichip_base(intr_num, gicd_base);
|
|
|
|
|
|
|
|
/* Configure this interrupt as a secure interrupt */
|
|
|
|
gicd_clr_igroupr(multichip_gicd_base, intr_num);
|
|
|
|
|
|
|
|
/* Configure this interrupt as G0 or a G1S interrupt */
|
|
|
|
assert((current_prop->intr_grp == INTR_GROUP0) ||
|
|
|
|
(current_prop->intr_grp == INTR_GROUP1S));
|
|
|
|
|
|
|
|
if (current_prop->intr_grp == INTR_GROUP1S) {
|
|
|
|
gicd_set_igrpmodr(multichip_gicd_base, intr_num);
|
|
|
|
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
|
|
|
|
} else {
|
|
|
|
gicd_clr_igrpmodr(multichip_gicd_base, intr_num);
|
|
|
|
ctlr_enable |= CTLR_ENABLE_G0_BIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set interrupt configuration */
|
|
|
|
gicd_set_icfgr(multichip_gicd_base, intr_num,
|
|
|
|
current_prop->intr_cfg);
|
|
|
|
|
|
|
|
/* Set the priority of this interrupt */
|
|
|
|
gicd_set_ipriorityr(multichip_gicd_base, intr_num,
|
|
|
|
current_prop->intr_pri);
|
|
|
|
|
|
|
|
/* Target (E)SPIs to the primary CPU */
|
|
|
|
gic_affinity_val =
|
|
|
|
gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
|
|
|
|
gicd_write_irouter(multichip_gicd_base, intr_num,
|
|
|
|
gic_affinity_val);
|
|
|
|
|
|
|
|
/* Enable this interrupt */
|
|
|
|
gicd_set_isenabler(multichip_gicd_base, intr_num);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ctlr_enable;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to configure the default attributes of (E)PPIs/SGIs
|
|
|
|
******************************************************************************/
|
|
|
|
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
|
|
|
|
{
|
|
|
|
unsigned int i, ppi_regs_num, regs_num;
|
|
|
|
|
|
|
|
#if GIC_EXT_INTID
|
|
|
|
/* Calculate number of PPI registers */
|
|
|
|
ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
|
|
|
|
TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
|
|
|
|
/* All other values except PPInum [0-2] are reserved */
|
|
|
|
if (ppi_regs_num > 3U) {
|
|
|
|
ppi_regs_num = 1U;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
ppi_regs_num = 1U;
|
|
|
|
#endif
|
|
|
|
/*
|
|
|
|
* Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
|
|
|
|
* This is a more scalable approach as it avoids clearing
|
|
|
|
* the enable bits in the GICD_CTLR.
|
|
|
|
*/
|
|
|
|
for (i = 0U; i < ppi_regs_num; ++i) {
|
|
|
|
gicr_write_icenabler(gicr_base, i, ~0U);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wait for pending writes to GICR_ICENABLER */
|
|
|
|
gicr_wait_for_pending_write(gicr_base);
|
|
|
|
|
|
|
|
/* 32 interrupt IDs per GICR_IGROUPR register */
|
|
|
|
for (i = 0U; i < ppi_regs_num; ++i) {
|
|
|
|
/* Treat all SGIs/(E)PPIs as G1NS by default */
|
|
|
|
gicr_write_igroupr(gicr_base, i, ~0U);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 4 interrupt IDs per GICR_IPRIORITYR register */
|
|
|
|
regs_num = ppi_regs_num << 3;
|
|
|
|
for (i = 0U; i < regs_num; ++i) {
|
|
|
|
/* Setup the default (E)PPI/SGI priorities doing 4 at a time */
|
|
|
|
gicr_write_ipriorityr(gicr_base, i << 2, GICD_IPRIORITYR_DEF_VAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 16 interrupt IDs per GICR_ICFGR register */
|
|
|
|
regs_num = ppi_regs_num << 1;
|
|
|
|
for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) {
|
|
|
|
/* Configure all (E)PPIs as level triggered by default */
|
|
|
|
gicr_write_icfgr(gicr_base, i, 0U);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs
|
|
|
|
******************************************************************************/
|
|
|
|
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
|
|
|
|
const interrupt_prop_t *interrupt_props,
|
|
|
|
unsigned int interrupt_props_num)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
const interrupt_prop_t *current_prop;
|
|
|
|
unsigned int ctlr_enable = 0U;
|
|
|
|
|
|
|
|
/* Make sure there's a valid property array */
|
|
|
|
if (interrupt_props_num > 0U) {
|
|
|
|
assert(interrupt_props != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0U; i < interrupt_props_num; i++) {
|
|
|
|
current_prop = &interrupt_props[i];
|
|
|
|
|
|
|
|
unsigned int intr_num = current_prop->intr_num;
|
|
|
|
|
|
|
|
/* Skip (E)SPI interrupt */
|
|
|
|
if (!IS_SGI_PPI(intr_num)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Configure this interrupt as a secure interrupt */
|
|
|
|
gicr_clr_igroupr(gicr_base, intr_num);
|
|
|
|
|
|
|
|
/* Configure this interrupt as G0 or a G1S interrupt */
|
|
|
|
assert((current_prop->intr_grp == INTR_GROUP0) ||
|
|
|
|
(current_prop->intr_grp == INTR_GROUP1S));
|
|
|
|
|
|
|
|
if (current_prop->intr_grp == INTR_GROUP1S) {
|
|
|
|
gicr_set_igrpmodr(gicr_base, intr_num);
|
|
|
|
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
|
|
|
|
} else {
|
|
|
|
gicr_clr_igrpmodr(gicr_base, intr_num);
|
|
|
|
ctlr_enable |= CTLR_ENABLE_G0_BIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the priority of this interrupt */
|
|
|
|
gicr_set_ipriorityr(gicr_base, intr_num,
|
|
|
|
current_prop->intr_pri);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set interrupt configuration for (E)PPIs.
|
|
|
|
* Configurations for SGIs 0-15 are ignored.
|
|
|
|
*/
|
|
|
|
if (intr_num >= MIN_PPI_ID) {
|
|
|
|
gicr_set_icfgr(gicr_base, intr_num,
|
|
|
|
current_prop->intr_cfg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable this interrupt */
|
|
|
|
gicr_set_isenabler(gicr_base, intr_num);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ctlr_enable;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region
|
|
|
|
* @gicr_frame: base address of the GICR region to check
|
|
|
|
*
|
|
|
|
* This iterates over the GICR_TYPER registers of multiple GICR frames in
|
|
|
|
* a GICR region, to find the instance which has the LAST bit set. For most
|
|
|
|
* systems this corresponds to the number of cores handled by a redistributor,
|
|
|
|
* but there could be disabled cores among them.
|
|
|
|
* It assumes that each GICR region is fully accessible (till the LAST bit
|
|
|
|
* marks the end of the region).
|
|
|
|
* If a platform has multiple GICR regions, this function would need to be
|
|
|
|
* called multiple times, providing the respective GICR base address each time.
|
|
|
|
*
|
|
|
|
* Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT)
|
|
|
|
******************************************************************************/
|
|
|
|
unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame)
|
|
|
|
{
|
|
|
|
uintptr_t rdistif_base = gicr_frame;
|
|
|
|
unsigned int count;
|
|
|
|
|
|
|
|
for (count = 1U; count < PLATFORM_CORE_COUNT; count++) {
|
|
|
|
uint64_t typer_val = gicr_read_typer(rdistif_base);
|
|
|
|
|
|
|
|
if ((typer_val & TYPER_LAST_BIT) != 0U) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
rdistif_base += gicv3_redist_size(typer_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int gicv3_get_component_partnum(const uintptr_t gic_frame)
|
|
|
|
{
|
|
|
|
unsigned int part_id;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The lower 8 bits of PIDR0, complemented by the lower 4 bits of
|
|
|
|
* PIDR1 contain a part number identifying the GIC component at a
|
|
|
|
* particular base address.
|
|
|
|
*/
|
|
|
|
part_id = mmio_read_32(gic_frame + GICD_PIDR0_GICV3) & 0xff;
|
|
|
|
part_id |= (mmio_read_32(gic_frame + GICD_PIDR1_GICV3) << 8) & 0xf00;
|
|
|
|
|
|
|
|
return part_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Helper function to return product ID and revision of GIC
|
|
|
|
* @gicd_base: base address of the GIC distributor
|
|
|
|
* @gic_prod_id: retrieved product id of GIC
|
|
|
|
* @gic_rev: retrieved revision of GIC
|
|
|
|
******************************************************************************/
|
|
|
|
void gicv3_get_component_prodid_rev(const uintptr_t gicd_base,
|
|
|
|
unsigned int *gic_prod_id,
|
|
|
|
uint8_t *gic_rev)
|
|
|
|
{
|
|
|
|
unsigned int gicd_iidr;
|
|
|
|
uint8_t gic_variant;
|
|
|
|
|
|
|
|
gicd_iidr = gicd_read_iidr(gicd_base);
|
|
|
|
*gic_prod_id = gicd_iidr >> IIDR_PRODUCT_ID_SHIFT;
|
|
|
|
*gic_prod_id &= IIDR_PRODUCT_ID_MASK;
|
|
|
|
|
|
|
|
gic_variant = gicd_iidr >> IIDR_VARIANT_SHIFT;
|
|
|
|
gic_variant &= IIDR_VARIANT_MASK;
|
|
|
|
|
|
|
|
*gic_rev = gicd_iidr >> IIDR_REV_SHIFT;
|
|
|
|
*gic_rev &= IIDR_REV_MASK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pack gic variant and gic_rev in 1 byte
|
|
|
|
* gic_rev = gic_variant[7:4] and gic_rev[0:3]
|
|
|
|
*/
|
|
|
|
*gic_rev = *gic_rev | gic_variant << 0x4;
|
|
|
|
|
|
|
|
}
|