You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

379 lines
12 KiB

/*
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <auth_mod.h>
#include <bl_common.h>
#include <debug.h>
#include <errno.h>
#include <io_storage.h>
#include <platform.h>
#include <string.h>
unsigned long page_align(unsigned long value, unsigned dir)
{
unsigned long page_size = 1 << FOUR_KB_SHIFT;
/* Round up the limit to the next page boundary */
if (value & (page_size - 1)) {
value &= ~(page_size - 1);
if (dir == UP)
value += page_size;
}
return value;
}
static inline unsigned int is_page_aligned (unsigned long addr) {
const unsigned long page_size = 1 << FOUR_KB_SHIFT;
return (addr & (page_size - 1)) == 0;
}
/******************************************************************************
* Determine whether the memory region delimited by 'addr' and 'size' is free,
* given the extents of free memory.
* Return 1 if it is free, 0 otherwise.
*****************************************************************************/
static int is_mem_free(uint64_t free_base, size_t free_size,
uint64_t addr, size_t size)
{
return (addr >= free_base) && (addr + size <= free_base + free_size);
}
/******************************************************************************
* Inside a given memory region, determine whether a sub-region of memory is
* closer from the top or the bottom of the encompassing region. Return the
* size of the smallest chunk of free memory surrounding the sub-region in
* 'small_chunk_size'.
*****************************************************************************/
static unsigned int choose_mem_pos(uint64_t mem_start, uint64_t mem_end,
uint64_t submem_start, uint64_t submem_end,
size_t *small_chunk_size)
{
size_t top_chunk_size, bottom_chunk_size;
assert(mem_start <= submem_start);
assert(submem_start <= submem_end);
assert(submem_end <= mem_end);
assert(small_chunk_size != NULL);
top_chunk_size = mem_end - submem_end;
bottom_chunk_size = submem_start - mem_start;
if (top_chunk_size < bottom_chunk_size) {
*small_chunk_size = top_chunk_size;
return TOP;
} else {
*small_chunk_size = bottom_chunk_size;
return BOTTOM;
}
}
/******************************************************************************
* Reserve the memory region delimited by 'addr' and 'size'. The extents of free
* memory are passed in 'free_base' and 'free_size' and they will be updated to
* reflect the memory usage.
* The caller must ensure the memory to reserve is free.
*****************************************************************************/
void reserve_mem(uint64_t *free_base, size_t *free_size,
uint64_t addr, size_t size)
{
size_t discard_size;
size_t reserved_size;
unsigned int pos;
assert(free_base != NULL);
assert(free_size != NULL);
assert(is_mem_free(*free_base, *free_size, addr, size));
pos = choose_mem_pos(*free_base, *free_base + *free_size,
addr, addr + size,
&discard_size);
reserved_size = size + discard_size;
*free_size -= reserved_size;
if (pos == BOTTOM)
*free_base = addr + size;
VERBOSE("Reserved 0x%lx bytes (discarded 0x%lx bytes %s)\n",
reserved_size, discard_size,
pos == TOP ? "above" : "below");
}
static void dump_load_info(unsigned long image_load_addr,
unsigned long image_size,
const meminfo_t *mem_layout)
{
INFO("Trying to load image at address 0x%lx, size = 0x%lx\n",
image_load_addr, image_size);
INFO("Current memory layout:\n");
INFO(" total region = [0x%lx, 0x%lx]\n", mem_layout->total_base,
mem_layout->total_base + mem_layout->total_size);
INFO(" free region = [0x%lx, 0x%lx]\n", mem_layout->free_base,
mem_layout->free_base + mem_layout->free_size);
}
/* Generic function to return the size of an image */
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
unsigned long image_size(unsigned int image_id)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
size_t image_size = 0;
int io_result;
/* Obtain a reference to the image by querying the platform layer */
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
io_result = plat_get_image_source(image_id, &dev_handle, &image_spec);
if (io_result != 0) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to obtain reference to image id=%u (%i)\n",
image_id, io_result);
return 0;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != 0) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to access image id=%u (%i)\n",
image_id, io_result);
return 0;
}
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != 0) || (image_size == 0)) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to determine the size of the image id=%u (%i)\n",
image_id, io_result);
}
io_result = io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this
* bootloader stage
*/
io_result = io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return image_size;
}
/*******************************************************************************
* Generic function to load an image at a specific address given a name and
* extents of free memory. It updates the memory layout if the load is
* successful, as well as the image information and the entry point information.
* The caller might pass a NULL pointer for the entry point if it is not
* interested in this information, e.g. because the image just needs to be
* loaded in memory but won't ever be executed.
* Returns 0 on success, a negative error code otherwise.
******************************************************************************/
int load_image(meminfo_t *mem_layout,
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
unsigned int image_id,
uintptr_t image_base,
image_info_t *image_data,
entry_point_info_t *entry_point_info)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
size_t image_size;
size_t bytes_read;
int io_result;
assert(mem_layout != NULL);
assert(image_data != NULL);
assert(image_data->h.version >= VERSION_1);
/* Obtain a reference to the image by querying the platform layer */
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
io_result = plat_get_image_source(image_id, &dev_handle, &image_spec);
if (io_result != 0) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to obtain reference to image id=%u (%i)\n",
image_id, io_result);
return io_result;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != 0) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to access image id=%u (%i)\n",
image_id, io_result);
return io_result;
}
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
INFO("Loading image id=%u at address 0x%lx\n", image_id, image_base);
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != 0) || (image_size == 0)) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to determine the size of the image id=%u (%i)\n",
image_id, io_result);
goto exit;
}
/* Check that the memory where the image will be loaded is free */
if (!is_mem_free(mem_layout->free_base, mem_layout->free_size,
image_base, image_size)) {
WARN("Failed to reserve memory: 0x%lx - 0x%lx\n",
image_base, image_base + image_size);
dump_load_info(image_base, image_size, mem_layout);
io_result = -ENOMEM;
goto exit;
}
/* We have enough space so load the image now */
/* TODO: Consider whether to try to recover/retry a partially successful read */
io_result = io_read(image_handle, image_base, image_size, &bytes_read);
if ((io_result != 0) || (bytes_read < image_size)) {
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
WARN("Failed to load image id=%u (%i)\n", image_id, io_result);
goto exit;
}
/*
* Update the memory usage info.
* This is done after the actual loading so that it is not updated when
* the load is unsuccessful.
* If the caller does not provide an entry point, bypass the memory
* reservation.
*/
if (entry_point_info != NULL) {
reserve_mem(&mem_layout->free_base, &mem_layout->free_size,
image_base, image_size);
} else {
INFO("Skip reserving memory: 0x%lx - 0x%lx\n",
image_base, image_base + image_size);
}
image_data->image_base = image_base;
image_data->image_size = image_size;
if (entry_point_info != NULL)
entry_point_info->pc = image_base;
/*
* File has been successfully loaded.
* Flush the image in TZRAM so that the next EL can see it.
*/
flush_dcache_range(image_base, image_size);
Use numbers to identify images instead of names The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type &#39;io_uuid_spec_t&#39; has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --&gt; uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
10 years ago
INFO("Image id=%u loaded: 0x%lx - 0x%lx\n", image_id, image_base,
image_base + image_size);
exit:
io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this bootloader stage */
io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return io_result;
}
/*******************************************************************************
* Generic function to load and authenticate an image. The image is actually
* loaded by calling the 'load_image()' function. In addition, this function
* uses recursion to authenticate the parent images up to the root of trust.
******************************************************************************/
int load_auth_image(meminfo_t *mem_layout,
unsigned int image_id,
uintptr_t image_base,
image_info_t *image_data,
entry_point_info_t *entry_point_info)
{
int rc;
#if TRUSTED_BOARD_BOOT
unsigned int parent_id;
/* Use recursion to authenticate parent images */
rc = auth_mod_get_parent_id(image_id, &parent_id);
if (rc == 0) {
rc = load_auth_image(mem_layout, parent_id, image_base,
image_data, NULL);
if (rc != 0) {
return rc;
}
}
#endif /* TRUSTED_BOARD_BOOT */
/* Load the image */
rc = load_image(mem_layout, image_id, image_base, image_data,
entry_point_info);
if (rc != 0) {
return rc;
}
#if TRUSTED_BOARD_BOOT
/* Authenticate it */
rc = auth_mod_verify_img(image_id,
(void *)image_data->image_base,
image_data->image_size);
if (rc != 0) {
memset((void *)image_data->image_base, 0x00,
image_data->image_size);
flush_dcache_range(image_data->image_base,
image_data->image_size);
return -EAUTH;
}
/* After working with data, invalidate the data cache */
inv_dcache_range(image_data->image_base,
(size_t)image_data->image_size);
#endif /* TRUSTED_BOARD_BOOT */
return 0;
}
/*******************************************************************************
* Print the content of an entry_point_info_t structure.
******************************************************************************/
void print_entry_point_info(const entry_point_info_t *ep_info)
{
INFO("Entry point address = 0x%llx\n",
(unsigned long long) ep_info->pc);
INFO("SPSR = 0x%lx\n", (unsigned long) ep_info->spsr);
#define PRINT_IMAGE_ARG(n) \
VERBOSE("Argument #" #n " = 0x%llx\n", \
(unsigned long long) ep_info->args.arg##n)
PRINT_IMAGE_ARG(0);
PRINT_IMAGE_ARG(1);
PRINT_IMAGE_ARG(2);
PRINT_IMAGE_ARG(3);
PRINT_IMAGE_ARG(4);
PRINT_IMAGE_ARG(5);
PRINT_IMAGE_ARG(6);
PRINT_IMAGE_ARG(7);
#undef PRINT_IMAGE_ARG
}