You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

37 lines
1.0 KiB

#
# Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
Introduce PSCI Library Interface This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
9 years ago
PSCI_LIB_SOURCES := lib/el3_runtime/cpu_data_array.c \
lib/el3_runtime/${ARCH}/cpu_data.S \
lib/el3_runtime/${ARCH}/context_mgmt.c \
lib/cpus/${ARCH}/cpu_helpers.S \
Report errata workaround status to console The errata reporting policy is as follows: - If an errata workaround is enabled: - If it applies (i.e. the CPU is affected by the errata), an INFO message is printed, confirming that the errata workaround has been applied. - If it does not apply, a VERBOSE message is printed, confirming that the errata workaround has been skipped. - If an errata workaround is not enabled, but would have applied had it been, a WARN message is printed, alerting that errata workaround is missing. The CPU errata messages are printed by both BL1 (primary CPU only) and runtime firmware on debug builds, once for each CPU/errata combination. Relevant output from Juno r1 console when ARM Trusted Firmware is built with PLAT=juno LOG_LEVEL=50 DEBUG=1: VERBOSE: BL1: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL1: cortex_a57: errata workaround for 813420 was not applied INFO: BL1: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL1: cortex_a57: errata workaround for 826974 was missing! WARNING: BL1: cortex_a57: errata workaround for 826977 was missing! WARNING: BL1: cortex_a57: errata workaround for 828024 was missing! WARNING: BL1: cortex_a57: errata workaround for 829520 was missing! WARNING: BL1: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL31: cortex_a57: errata workaround for 813420 was not applied INFO: BL31: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL31: cortex_a57: errata workaround for 826974 was missing! WARNING: BL31: cortex_a57: errata workaround for 826977 was missing! WARNING: BL31: cortex_a57: errata workaround for 828024 was missing! WARNING: BL31: cortex_a57: errata workaround for 829520 was missing! WARNING: BL31: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a53: errata workaround for 826319 was not applied INFO: BL31: cortex_a53: errata workaround for disable_non_temporal_hint was applied Also update documentation. Change-Id: Iccf059d3348adb876ca121cdf5207bdbbacf2aba Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
8 years ago
lib/cpus/errata_report.c \
lib/locks/exclusive/${ARCH}/spinlock.S \
Introduce PSCI Library Interface This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
9 years ago
lib/psci/psci_off.c \
lib/psci/psci_on.c \
lib/psci/psci_suspend.c \
lib/psci/psci_common.c \
lib/psci/psci_main.c \
lib/psci/psci_setup.c \
lib/psci/psci_system_off.c \
lib/psci/psci_mem_protect.c \
lib/psci/${ARCH}/psci_helpers.S
ifeq (${ARCH}, aarch64)
PSCI_LIB_SOURCES += lib/el3_runtime/aarch64/context.S \
lib/cpus/aarch64/runtime_errata.S
endif
ifeq (${USE_COHERENT_MEM}, 1)
PSCI_LIB_SOURCES += lib/locks/bakery/bakery_lock_coherent.c
else
PSCI_LIB_SOURCES += lib/locks/bakery/bakery_lock_normal.c
endif
ifeq (${ENABLE_PSCI_STAT}, 1)
PSCI_LIB_SOURCES += lib/psci/psci_stat.c
endif