You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

678 lines
21 KiB

#
# Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# Neither the name of ARM nor the names of its contributors may be used
# to endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
#
# Trusted Firmware Version
#
VERSION_MAJOR := 1
VERSION_MINOR := 1
#
# Default values for build configurations
#
# Build verbosity
V := 0
# Debug build
DEBUG := 0
# Build platform
DEFAULT_PLAT := fvp
PLAT := ${DEFAULT_PLAT}
# SPD choice
SPD := none
# Base commit to perform code check on
BASE_COMMIT := origin/master
# NS timer register save and restore
NS_TIMER_SWITCH := 0
# By default, Bl1 acts as the reset handler, not BL31
RESET_TO_BL31 := 0
# Include FP registers in cpu context
CTX_INCLUDE_FPREGS := 0
# Determine the version of ARM GIC architecture to use for interrupt management
# in EL3. The platform port can change this value if needed.
ARM_GIC_ARCH := 2
# Determine the version of ARM CCI product used in the platform. The platform
# port can change this value if needed.
ARM_CCI_PRODUCT_ID := 400
# Flag used to indicate if ASM_ASSERTION should be enabled for the build.
# This defaults to being present in DEBUG builds only.
ASM_ASSERTION := ${DEBUG}
# Build option to choose whether Trusted firmware uses Coherent memory or not.
USE_COHERENT_MEM := 1
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
10 years ago
# Flag used to choose the power state format viz Extended State-ID or the Original
# format.
PSCI_EXTENDED_STATE_ID := 0
# Default FIP file name
FIP_NAME := fip.bin
# By default, use the -pedantic option in the gcc command line
DISABLE_PEDANTIC := 0
# Flags to generate the Chain of Trust
GENERATE_COT := 0
CREATE_KEYS := 1
SAVE_KEYS := 0
# Flags to build TF with Trusted Boot support
TRUSTED_BOARD_BOOT := 0
# By default, consider that the platform's reset address is not programmable.
# The platform Makefile is free to override this value.
PROGRAMMABLE_RESET_ADDRESS := 0
# Checkpatch ignores
CHECK_IGNORE = --ignore COMPLEX_MACRO \
--ignore GERRIT_CHANGE_ID \
--ignore GIT_COMMIT_ID
CHECKPATCH_ARGS = --no-tree --no-signoff ${CHECK_IGNORE}
CHECKCODE_ARGS = --no-patch --no-tree --no-signoff ${CHECK_IGNORE}
# Do not check the coding style on C library files
CHECK_PATHS = $(shell ls -I include -I lib) \
$(addprefix include/,$(shell ls -I stdlib include)) \
$(addprefix lib/,$(shell ls -I stdlib lib))
ifeq (${V},0)
Q=@
CHECKCODE_ARGS += --no-summary --terse
else
Q=
endif
export Q
ifneq (${DEBUG}, 0)
BUILD_TYPE := debug
# Use LOG_LEVEL_INFO by default for debug builds
LOG_LEVEL := 40
else
BUILD_TYPE := release
# Use LOG_LEVEL_NOTICE by default for release builds
LOG_LEVEL := 20
endif
# Default build string (git branch and commit)
ifeq (${BUILD_STRING},)
BUILD_STRING := $(shell git log -n 1 --pretty=format:"%h")
endif
VERSION_STRING := v${VERSION_MAJOR}.${VERSION_MINOR}(${BUILD_TYPE}):${BUILD_STRING}
BL_COMMON_SOURCES := common/bl_common.c \
common/tf_printf.c \
common/aarch64/debug.S \
lib/aarch64/cache_helpers.S \
lib/aarch64/misc_helpers.S \
lib/aarch64/xlat_helpers.c \
lib/stdlib/std.c \
plat/common/aarch64/platform_helpers.S
BUILD_BASE := ./build
BUILD_PLAT := ${BUILD_BASE}/${PLAT}/${BUILD_TYPE}
PLAT_MAKEFILE := platform.mk
# Generate the platforms list by recursively searching for all directories
# under /plat containing a PLAT_MAKEFILE. Append each platform with a `|`
# char and strip out the final '|'.
PLATFORMS := $(shell find plat/ -name '${PLAT_MAKEFILE}' -print0 | \
sed -r 's%[^\x00]*\/([^/]*)\/${PLAT_MAKEFILE}\x00%\1|%g' | \
sed -r 's/\|$$//')
SPDS := $(shell ls -I none services/spd)
# Convenience function for adding build definitions
# $(eval $(call add_define,FOO)) will have:
# -DFOO if $(FOO) is empty; -DFOO=$(FOO) otherwise
define add_define
DEFINES += -D$(1)$(if $(value $(1)),=$(value $(1)),)
endef
# Convenience function for verifying option has a boolean value
# $(eval $(call assert_boolean,FOO)) will assert FOO is 0 or 1
define assert_boolean
$(and $(patsubst 0,,$(value $(1))),$(patsubst 1,,$(value $(1))),$(error $(1) must be boolean))
endef
ifeq (${PLAT},)
$(error "Error: Unknown platform. Please use PLAT=<platform name> to specify the platform")
endif
PLAT_MAKEFILE_FULL := $(shell find plat/ -wholename '*/${PLAT}/${PLAT_MAKEFILE}')
ifeq ($(PLAT_MAKEFILE_FULL),)
$(error "Error: Invalid platform. The following platforms are available: ${PLATFORMS}")
endif
all: msg_start
msg_start:
@echo "Building ${PLAT}"
include ${PLAT_MAKEFILE_FULL}
# Include the CPU specific operations makefile. By default all CPU errata
# workarounds and CPU specifc optimisations are disabled. This can be
# overridden by the platform.
include lib/cpus/cpu-ops.mk
ifdef BL1_SOURCES
NEED_BL1 := yes
include bl1/bl1.mk
endif
ifdef BL2_SOURCES
NEED_BL2 := yes
include bl2/bl2.mk
# Using the ARM Trusted Firmware BL2 implies that a BL3-3 image also need to be supplied for the FIP.
# This flag can be overridden by the platform.
NEED_BL33 ?= yes
endif
ifdef BL31_SOURCES
NEED_BL31 := yes
include bl31/bl31.mk
endif
# Include SPD Makefile if one has been specified
ifneq (${SPD},none)
# We expect to locate an spd.mk under the specified SPD directory
SPD_MAKE := $(shell m="services/spd/${SPD}/${SPD}.mk"; [ -f "$$m" ] && echo "$$m")
ifeq (${SPD_MAKE},)
$(error Error: No services/spd/${SPD}/${SPD}.mk located)
endif
$(info Including ${SPD_MAKE})
include ${SPD_MAKE}
# If there's BL3-2 companion for the chosen SPD, and the SPD wants to build the
# BL3-2 from source, we expect that the SPD's Makefile would set NEED_BL32
# variable to "yes". In case the BL3-2 is a binary which needs to be included in
# fip, then the NEED_BL32 needs to be set and BL3-2 would need to point to the bin.
endif
.PHONY: all msg_start clean realclean distclean cscope locate-checkpatch checkcodebase checkpatch fiptool fip certtool
.SUFFIXES:
INCLUDES += -Iinclude/bl31 \
-Iinclude/bl31/services \
-Iinclude/common \
-Iinclude/drivers \
-Iinclude/drivers/arm \
-Iinclude/drivers/auth \
-Iinclude/drivers/io \
-Iinclude/drivers/ti/uart \
-Iinclude/lib \
-Iinclude/lib/aarch64 \
-Iinclude/lib/cpus/aarch64 \
-Iinclude/plat/common \
-Iinclude/stdlib \
-Iinclude/stdlib/sys \
${PLAT_INCLUDES} \
${SPD_INCLUDES}
# Process DEBUG flag
$(eval $(call assert_boolean,DEBUG))
$(eval $(call add_define,DEBUG))
ifeq (${DEBUG},0)
$(eval $(call add_define,NDEBUG))
else
CFLAGS += -g
ASFLAGS += -g -Wa,--gdwarf-2
endif
# Process PLAT flag
$(eval $(call add_define,PLAT_${PLAT}))
# Process NS_TIMER_SWITCH flag
$(eval $(call assert_boolean,NS_TIMER_SWITCH))
$(eval $(call add_define,NS_TIMER_SWITCH))
# Process RESET_TO_BL31 flag
$(eval $(call assert_boolean,RESET_TO_BL31))
$(eval $(call add_define,RESET_TO_BL31))
# Process CTX_INCLUDE_FPREGS flag
$(eval $(call assert_boolean,CTX_INCLUDE_FPREGS))
$(eval $(call add_define,CTX_INCLUDE_FPREGS))
# Process ARM_GIC_ARCH flag
$(eval $(call add_define,ARM_GIC_ARCH))
# Process ARM_CCI_PRODUCT_ID flag
$(eval $(call add_define,ARM_CCI_PRODUCT_ID))
# Process ASM_ASSERTION flag
$(eval $(call assert_boolean,ASM_ASSERTION))
$(eval $(call add_define,ASM_ASSERTION))
# Process LOG_LEVEL flag
$(eval $(call add_define,LOG_LEVEL))
# Process USE_COHERENT_MEM flag
$(eval $(call assert_boolean,USE_COHERENT_MEM))
$(eval $(call add_define,USE_COHERENT_MEM))
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE &lt; PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
10 years ago
# Process PSCI_EXTENDED_STATE_ID flag
$(eval $(call assert_boolean,PSCI_EXTENDED_STATE_ID))
$(eval $(call add_define,PSCI_EXTENDED_STATE_ID))
# Process Generate CoT flags
$(eval $(call assert_boolean,GENERATE_COT))
$(eval $(call assert_boolean,CREATE_KEYS))
$(eval $(call assert_boolean,SAVE_KEYS))
# Process TRUSTED_BOARD_BOOT flag
$(eval $(call assert_boolean,TRUSTED_BOARD_BOOT))
$(eval $(call add_define,TRUSTED_BOARD_BOOT))
# Process PROGRAMMABLE_RESET_ADDRESS flag
$(eval $(call assert_boolean,PROGRAMMABLE_RESET_ADDRESS))
$(eval $(call add_define,PROGRAMMABLE_RESET_ADDRESS))
ASFLAGS += -nostdinc -ffreestanding -Wa,--fatal-warnings \
-Werror -Wmissing-include-dirs \
-mgeneral-regs-only -D__ASSEMBLY__ \
${DEFINES} ${INCLUDES}
CFLAGS += -nostdinc -ffreestanding -Wall \
-Werror -Wmissing-include-dirs \
-mgeneral-regs-only -std=c99 -c -Os \
${DEFINES} ${INCLUDES}
CFLAGS += -ffunction-sections -fdata-sections
LDFLAGS += --fatal-warnings -O1
LDFLAGS += --gc-sections
CC := ${CROSS_COMPILE}gcc
CPP := ${CROSS_COMPILE}cpp
AS := ${CROSS_COMPILE}gcc
AR := ${CROSS_COMPILE}ar
LD := ${CROSS_COMPILE}ld
OC := ${CROSS_COMPILE}objcopy
OD := ${CROSS_COMPILE}objdump
NM := ${CROSS_COMPILE}nm
PP := ${CROSS_COMPILE}gcc -E ${CFLAGS}
# Variables for use with Firmware Image Package
FIPTOOLPATH ?= tools/fip_create
FIPTOOL ?= ${FIPTOOLPATH}/fip_create
fiptool: ${FIPTOOL}
fip: ${BUILD_PLAT}/${FIP_NAME}
# Variables for use with Certificate Generation Tool
CRTTOOLPATH ?= tools/cert_create
CRTTOOL ?= ${CRTTOOLPATH}/cert_create
certtool: ${CRTTOOL}
# CoT generation tool default parameters
TRUSTED_KEY_CERT := ${BUILD_PLAT}/trusted_key.crt
# Pass the private keys to the CoT generation tool in the command line
# If CREATE_KEYS is set, the '-n' option will be added, indicating the tool to create new keys
ifneq (${GENERATE_COT},0)
$(eval CERTS := yes)
$(eval FIP_DEPS += certificates)
$(eval FIP_ARGS += --trusted-key-cert ${TRUSTED_KEY_CERT})
ifneq (${CREATE_KEYS},0)
$(eval CRT_ARGS += -n)
ifneq (${SAVE_KEYS},0)
$(eval CRT_ARGS += -k)
endif
endif
$(eval CRT_ARGS += $(if ${ROT_KEY}, --rot-key ${ROT_KEY}))
$(eval CRT_ARGS += $(if ${TRUSTED_WORLD_KEY}, --trusted-world-key ${TRUSTED_WORLD_KEY}))
$(eval CRT_ARGS += $(if ${NON_TRUSTED_WORLD_KEY}, --non-trusted-world-key ${NON_TRUSTED_WORLD_KEY}))
$(eval CRT_ARGS += --trusted-key-cert ${TRUSTED_KEY_CERT})
$(eval CRT_ARGS += $(if ${KEY_ALG}, --key-alg ${KEY_ALG}))
endif
# Check if -pedantic option should be used
ifeq (${DISABLE_PEDANTIC},0)
CFLAGS += -pedantic
endif
locate-checkpatch:
ifndef CHECKPATCH
$(error "Please set CHECKPATCH to point to the Linux checkpatch.pl file, eg: CHECKPATCH=../linux/script/checkpatch.pl")
else
ifeq (,$(wildcard ${CHECKPATCH}))
$(error "The file CHECKPATCH points to cannot be found, use eg: CHECKPATCH=../linux/script/checkpatch.pl")
endif
endif
clean:
@echo " CLEAN"
${Q}rm -rf ${BUILD_PLAT}
${Q}${MAKE} --no-print-directory -C ${FIPTOOLPATH} clean
${Q}${MAKE} PLAT=${PLAT} --no-print-directory -C ${CRTTOOLPATH} clean
realclean distclean:
@echo " REALCLEAN"
${Q}rm -rf ${BUILD_BASE}
${Q}rm -f ${CURDIR}/cscope.*
${Q}${MAKE} --no-print-directory -C ${FIPTOOLPATH} clean
${Q}${MAKE} PLAT=${PLAT} --no-print-directory -C ${CRTTOOLPATH} clean
checkcodebase: locate-checkpatch
@echo " CHECKING STYLE"
@if test -d .git ; then \
git ls-files | grep -v stdlib | while read GIT_FILE ; do ${CHECKPATCH} ${CHECKCODE_ARGS} -f $$GIT_FILE ; done ; \
else \
find . -type f -not -iwholename "*.git*" -not -iwholename "*build*" -not -iwholename "*stdlib*" -exec ${CHECKPATCH} ${CHECKCODE_ARGS} -f {} \; ; \
fi
checkpatch: locate-checkpatch
@echo " CHECKING STYLE"
${Q}git log -p ${BASE_COMMIT}..HEAD -- ${CHECK_PATHS} | ${CHECKPATCH} ${CHECKPATCH_ARGS} - || true
.PHONY: ${CRTTOOL}
${CRTTOOL}:
${Q}${MAKE} PLAT=${PLAT} --no-print-directory -C ${CRTTOOLPATH}
@echo
@echo "Built $@ successfully"
@echo
.PHONY: ${FIPTOOL}
${FIPTOOL}:
${Q}${MAKE} --no-print-directory -C ${FIPTOOLPATH}
define match_goals
$(strip $(foreach goal,$(1),$(filter $(goal),$(MAKECMDGOALS))))
endef
# List of rules that involve building things
BUILD_TARGETS := all bl1 bl2 bl31 bl32 fip
# Does the list of goals specified on the command line include a build target?
ifneq ($(call match_goals,${BUILD_TARGETS}),)
IS_ANYTHING_TO_BUILD := 1
endif
define MAKE_C
$(eval OBJ := $(1)/$(patsubst %.c,%.o,$(notdir $(2))))
$(eval PREREQUISITES := $(patsubst %.o,%.d,$(OBJ)))
$(OBJ) : $(2)
@echo " CC $$<"
$$(Q)$$(CC) $$(CFLAGS) -DIMAGE_BL$(3) -c $$< -o $$@
$(PREREQUISITES) : $(2)
@echo " DEPS $$@"
@mkdir -p $(1)
$$(Q)$$(CC) $$(CFLAGS) -M -MT $(OBJ) -MF $$@ $$<
ifdef IS_ANYTHING_TO_BUILD
-include $(PREREQUISITES)
endif
endef
define MAKE_S
$(eval OBJ := $(1)/$(patsubst %.S,%.o,$(notdir $(2))))
$(eval PREREQUISITES := $(patsubst %.o,%.d,$(OBJ)))
$(OBJ) : $(2)
@echo " AS $$<"
$$(Q)$$(AS) $$(ASFLAGS) -DIMAGE_BL$(3) -c $$< -o $$@
$(PREREQUISITES) : $(2)
@echo " DEPS $$@"
@mkdir -p $(1)
$$(Q)$$(AS) $$(ASFLAGS) -M -MT $(OBJ) -MF $$@ $$<
ifdef IS_ANYTHING_TO_BUILD
-include $(PREREQUISITES)
endif
endef
define MAKE_LD
$(eval PREREQUISITES := $(1).d)
$(1) : $(2)
@echo " PP $$<"
$$(Q)$$(AS) $$(ASFLAGS) -P -E -D__LINKER__ -o $$@ $$<
$(PREREQUISITES) : $(2)
@echo " DEPS $$@"
@mkdir -p $$(dir $$@)
$$(Q)$$(AS) $$(ASFLAGS) -M -MT $(1) -MF $$@ $$<
ifdef IS_ANYTHING_TO_BUILD
-include $(PREREQUISITES)
endif
endef
define MAKE_OBJS
$(eval C_OBJS := $(filter %.c,$(2)))
$(eval REMAIN := $(filter-out %.c,$(2)))
$(eval $(foreach obj,$(C_OBJS),$(call MAKE_C,$(1),$(obj),$(3))))
$(eval S_OBJS := $(filter %.S,$(REMAIN)))
$(eval REMAIN := $(filter-out %.S,$(REMAIN)))
$(eval $(foreach obj,$(S_OBJS),$(call MAKE_S,$(1),$(obj),$(3))))
$(and $(REMAIN),$(error Unexpected source files present: $(REMAIN)))
endef
# NOTE: The line continuation '\' is required in the next define otherwise we
# end up with a line-feed characer at the end of the last c filename.
# Also bare this issue in mind if extending the list of supported filetypes.
define SOURCES_TO_OBJS
$(notdir $(patsubst %.c,%.o,$(filter %.c,$(1)))) \
$(notdir $(patsubst %.S,%.o,$(filter %.S,$(1))))
endef
# MAKE_TOOL_ARGS macro defines the command line arguments for the FIP and CRT
# tools at each BL stage. Arguments:
# $(1) = BL stage (2, 30, 31, 32, 33)
# $(2) = Binary file
# $(3) = In FIP (false if empty)
# $(4) = Create certificates (false if empty)
# $(5) = Create key certificate (false if empty)
# $(6) = Private key (optional)
define MAKE_TOOL_ARGS
$(eval FIP_DEPS += $(if $3,$(2),))
$(eval FIP_ARGS += $(if $3,--bl$(1) $(2),))
$(eval FIP_ARGS += $(if $4,--bl$(1)-cert $(BUILD_PLAT)/bl$(1).crt))
$(eval FIP_ARGS += $(if $4,$(if $5,--bl$(1)-key-cert $(BUILD_PLAT)/bl$(1)_key.crt)))
$(eval CRT_DEPS += $(if $4,$(2),))
$(eval CRT_ARGS += $(if $4,--bl$(1) $(2)))
$(eval CRT_ARGS += $(if $4,$(if $6,--bl$(1)-key $(6))))
$(eval CRT_ARGS += $(if $4,--bl$(1)-cert $(BUILD_PLAT)/bl$(1).crt))
$(eval CRT_ARGS += $(if $4,$(if $5,--bl$(1)-key-cert $(BUILD_PLAT)/bl$(1)_key.crt)))
endef
# MAKE_BL macro defines the targets and options to build each BL image.
# Arguments:
# $(1) = BL stage (2, 30, 31, 32, 33)
# $(2) = In FIP (false if empty)
# $(3) = Create certificates (false if empty)
# $(4) = Create key certificate (false if empty)
# $(5) = Private key (optional)
define MAKE_BL
$(eval BUILD_DIR := ${BUILD_PLAT}/bl$(1))
$(eval SOURCES := $(BL$(1)_SOURCES) $(BL_COMMON_SOURCES) $(PLAT_BL_COMMON_SOURCES))
$(eval OBJS := $(addprefix $(BUILD_DIR)/,$(call SOURCES_TO_OBJS,$(SOURCES))))
$(eval LINKERFILE := $(BUILD_DIR)/bl$(1).ld)
$(eval MAPFILE := $(BUILD_DIR)/bl$(1).map)
$(eval ELF := $(BUILD_DIR)/bl$(1).elf)
$(eval DUMP := $(BUILD_DIR)/bl$(1).dump)
$(eval BIN := $(BUILD_PLAT)/bl$(1).bin)
$(eval $(call MAKE_OBJS,$(BUILD_DIR),$(SOURCES),$(1)))
$(eval $(call MAKE_LD,$(LINKERFILE),$(BL$(1)_LINKERFILE)))
$(BUILD_DIR) :
$$(Q)mkdir -p "$$@"
$(ELF) : $(OBJS) $(LINKERFILE)
@echo " LD $$@"
@echo 'const char build_message[] = "Built : "__TIME__", "__DATE__; \
const char version_string[] = "${VERSION_STRING}";' | \
$$(CC) $$(CFLAGS) -xc - -o $(BUILD_DIR)/build_message.o
$$(Q)$$(LD) -o $$@ $$(LDFLAGS) -Map=$(MAPFILE) --script $(LINKERFILE) \
$(BUILD_DIR)/build_message.o $(OBJS)
$(DUMP) : $(ELF)
@echo " OD $$@"
$${Q}$${OD} -dx $$< > $$@
$(BIN) : $(ELF)
@echo " BIN $$@"
$$(Q)$$(OC) -O binary $$< $$@
@echo
@echo "Built $$@ successfully"
@echo
.PHONY : bl$(1)
bl$(1) : $(BUILD_DIR) $(BIN) $(DUMP)
all : bl$(1)
$(eval $(call MAKE_TOOL_ARGS,$(1),$(BIN),$(2),$(3),$(4),$(5)))
endef
ifeq (${NEED_BL1},yes)
$(eval $(call MAKE_BL,1))
endif
ifeq (${NEED_BL2},yes)
$(if ${BL2}, $(eval $(call MAKE_TOOL_ARGS,2,${BL2},in_fip,${CERTS})),\
$(eval $(call MAKE_BL,2,in_fip,${CERTS})))
endif
ifeq (${NEED_BL31},yes)
BL31_SOURCES += ${SPD_SOURCES}
$(if ${BL31}, $(eval $(call MAKE_TOOL_ARGS,31,${BL31},in_fip,${CERTS},${CERTS},${BL31_KEY})),\
$(eval $(call MAKE_BL,31,in_fip,${CERTS},${CERTS},${BL31_KEY})))
endif
ifeq (${NEED_BL32},yes)
$(if ${BL32}, $(eval $(call MAKE_TOOL_ARGS,32,${BL32},in_fip,${CERTS},${CERTS},${BL32_KEY})),\
$(eval $(call MAKE_BL,32,in_fip,${CERTS},${CERTS},${BL32_KEY})))
endif
ifeq (${NEED_BL30},yes)
$(if ${BL30}, $(eval $(call MAKE_TOOL_ARGS,30,${BL30},in_fip,${CERTS},${CERTS},${BL30_KEY})))
# If BL3-0 is needed by the platform then 'BL30' variable must be defined.
check_bl30:
$(if ${BL30},,$(error "To build a FIP for platform ${PLAT}, please set BL30 to point to the SCP firmware"))
else
# If BL3-0 is not needed by the platform but the user still specified the path
# to a BL3-0 image then warn him that it will be ignored.
check_bl30:
$(if ${BL30},$(warning "BL3-0 is not supported on platform ${PLAT}, it will just be ignored"),)
endif
ifeq (${NEED_BL33},yes)
$(if ${BL33}, $(eval $(call MAKE_TOOL_ARGS,33,${BL33},in_fip,${CERTS},${CERTS},${BL33_KEY})))
# If BL3-3 is needed by the platform then 'BL33' variable must be defined.
check_bl33:
$(if ${BL33},,$(error "To build a FIP, please set BL33 to point to the Normal World binary, eg: BL33=../uefi/FVP_AARCH64_EFI.fd"))
else
# If BL3-3 is not needed by the platform but the user still specified the path
# to a BL3-3 image then warn him that it will be ignored.
check_bl33:
$(if ${BL33},$(warning "BL3-3 is not supported on platform ${PLAT}, it will just be ignored"),)
endif
# Add the dependency on the certificates
ifneq (${GENERATE_COT},0)
fip: certificates
endif
certificates: ${CRT_DEPS} ${CRTTOOL} check_bl30 check_bl33
${Q}${CRTTOOL} ${CRT_ARGS}
@echo
@echo "Built $@ successfully"
@echo "Certificates can be found in ${BUILD_PLAT}"
@echo
${BUILD_PLAT}/${FIP_NAME}: ${FIP_DEPS} ${FIPTOOL} check_bl30 check_bl33
${Q}${FIPTOOL} --dump \
${FIP_ARGS} \
$@
@echo
@echo "Built $@ successfully"
@echo
cscope:
@echo " CSCOPE"
${Q}find ${CURDIR} -name "*.[chsS]" > cscope.files
${Q}cscope -b -q -k
help:
@echo "usage: ${MAKE} PLAT=<${PLATFORMS}> [OPTIONS] [TARGET]"
@echo ""
@echo "PLAT is used to specify which platform you wish to build."
@echo "If no platform is specified, PLAT defaults to: ${DEFAULT_PLAT}"
@echo ""
@echo "Please refer to the User Guide for a list of all supported options."
@echo "Note that the build system doesn't track dependencies for build "
@echo "options. Therefore, if any of the build options are changed "
@echo "from a previous build, a clean build must be performed."
@echo ""
@echo "Supported Targets:"
@echo " all Build all individual bootloader binaries"
@echo " bl1 Build the BL1 binary"
@echo " bl2 Build the BL2 binary"
@echo " bl31 Build the BL3-1 binary"
@echo " bl32 Build the BL3-2 binary"
@echo " fip Build the Firmware Image Package (FIP)"
@echo " checkcodebase Check the coding style of the entire source tree"
@echo " checkpatch Check the coding style on changes in the current"
@echo " branch against BASE_COMMIT (default origin/master)"
@echo " clean Clean the build for the selected platform"
@echo " cscope Generate cscope index"
@echo " distclean Remove all build artifacts for all platforms"
@echo " certtool Build the Certificate generation tool"
@echo " fiptool Build the Firmware Image Package(FIP) creation tool"
@echo ""
@echo "Note: most build targets require PLAT to be set to a specific platform."
@echo ""
@echo "example: build all targets for the FVP platform:"
@echo " CROSS_COMPILE=aarch64-none-elf- make PLAT=fvp all"