You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

190 lines
7.3 KiB

/*
Introduce PSCI Library Interface This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
9 years ago
* Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <runtime_svc.h>
#include <string.h>
/*******************************************************************************
* This function pointer is used to initialise the BL32 image. It's initialized
* by SPD calling bl31_register_bl32_init after setting up all things necessary
* for SP execution. In cases where both SPD and SP are absent, or when SPD
* finds it impossible to execute SP, this pointer is left as NULL
******************************************************************************/
static int32_t (*bl32_init)(void);
/*******************************************************************************
* Variable to indicate whether next image to execute after BL31 is BL33
* (non-secure & default) or BL32 (secure).
******************************************************************************/
static uint32_t next_image_type = NON_SECURE;
/*******************************************************************************
* Simple function to initialise all BL31 helper libraries.
******************************************************************************/
void bl31_lib_init(void)
{
/* Setup the arguments for PSCI Library */
DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint);
cm_init();
Introduce PSCI Library Interface This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
9 years ago
/*
* Initialize the PSCI library here. This also does EL3 architectural
* setup.
*/
psci_setup(&psci_args);
}
/*******************************************************************************
* BL31 is responsible for setting up the runtime services for the primary cpu
* before passing control to the bootloader or an Operating System. This
* function calls runtime_svc_init() which initializes all registered runtime
* services. The run time services would setup enough context for the core to
* swtich to the next exception level. When this function returns, the core will
* switch to the programmed exception level via. an ERET.
******************************************************************************/
void bl31_main(void)
{
NOTICE("BL31: %s\n", version_string);
NOTICE("BL31: %s\n", build_message);
/* Perform platform setup in BL31 */
bl31_platform_setup();
/* Initialise helper libraries */
bl31_lib_init();
/* Initialize the runtime services e.g. psci */
INFO("BL31: Initializing runtime services\n");
runtime_svc_init();
/*
* All the cold boot actions on the primary cpu are done. We now need to
* decide which is the next image (BL32 or BL33) and how to execute it.
* If the SPD runtime service is present, it would want to pass control
* to BL32 first in S-EL1. In that case, SPD would have registered a
* function to intialize bl32 where it takes responsibility of entering
* S-EL1 and returning control back to bl31_main. Once this is done we
* can prepare entry into BL33 as normal.
*/
/*
* If SPD had registerd an init hook, invoke it.
*/
if (bl32_init) {
INFO("BL31: Initializing BL32\n");
(*bl32_init)();
}
/*
* We are ready to enter the next EL. Prepare entry into the image
* corresponding to the desired security state after the next ERET.
*/
bl31_prepare_next_image_entry();
/*
* Perform any platform specific runtime setup prior to cold boot exit
* from BL31
*/
bl31_plat_runtime_setup();
}
/*******************************************************************************
* Accessor functions to help runtime services decide which image should be
* executed after BL31. This is BL33 or the non-secure bootloader image by
* default but the Secure payload dispatcher could override this by requesting
* an entry into BL32 (Secure payload) first. If it does so then it should use
* the same API to program an entry into BL33 once BL32 initialisation is
* complete.
******************************************************************************/
void bl31_set_next_image_type(uint32_t security_state)
{
assert(sec_state_is_valid(security_state));
next_image_type = security_state;
}
uint32_t bl31_get_next_image_type(void)
{
return next_image_type;
}
/*******************************************************************************
* This function programs EL3 registers and performs other setup to enable entry
* into the next image after BL31 at the next ERET.
******************************************************************************/
void bl31_prepare_next_image_entry(void)
{
entry_point_info_t *next_image_info;
uint32_t image_type;
#if CTX_INCLUDE_AARCH32_REGS
/*
* Ensure that the build flag to save AArch32 system registers in CPU
* context is not set for AArch64-only platforms.
*/
if (((read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL1_SHIFT)
& ID_AA64PFR0_ELX_MASK) == 0x1) {
ERROR("EL1 supports AArch64-only. Please set build flag "
"CTX_INCLUDE_AARCH32_REGS = 0");
panic();
}
#endif
/* Determine which image to execute next */
image_type = bl31_get_next_image_type();
/* Program EL3 registers to enable entry into the next EL */
next_image_info = bl31_plat_get_next_image_ep_info(image_type);
assert(next_image_info);
assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
INFO("BL31: Preparing for EL3 exit to %s world\n",
(image_type == SECURE) ? "secure" : "normal");
print_entry_point_info(next_image_info);
cm_init_my_context(next_image_info);
cm_prepare_el3_exit(image_type);
}
/*******************************************************************************
* This function initializes the pointer to BL32 init function. This is expected
* to be called by the SPD after it finishes all its initialization
******************************************************************************/
void bl31_register_bl32_init(int32_t (*func)(void))
{
bl32_init = func;
}