diff --git a/services/std_svc/trng/trng_entropy_pool.c b/services/std_svc/trng/trng_entropy_pool.c index 30105b3a3..dd08c5eec 100644 --- a/services/std_svc/trng/trng_entropy_pool.c +++ b/services/std_svc/trng/trng_entropy_pool.c @@ -66,7 +66,7 @@ static bool trng_fill_entropy(uint32_t nbits) bool trng_pack_entropy(uint32_t nbits, uint64_t *out) { bool ret = true; - + uint32_t bits_to_discard = nbits; spin_lock(&trng_pool_lock); if (!trng_fill_entropy(nbits)) { @@ -111,9 +111,66 @@ bool trng_pack_entropy(uint32_t nbits, uint64_t *out) * 5 4 3 2 1 0 7 6 * [e,e,e,e,e,e,e,e] */ - out[word_i] = 0; out[word_i] |= entropy[ENTROPY_WORD_INDEX(word_i)] >> rshift; + /** + * Discarding the used/packed entropy bits from the respective + * words, (word_i) and (word_i+1) as applicable. + * In each iteration of the loop, we pack 64bits of entropy to + * the output buffer. The bits are picked linearly starting from + * 1st word (entropy[0]) till 4th word (entropy[3]) and then + * rolls back (entropy[0]). Discarding of bits is managed + * similarly. + * + * The following diagram illustrates the logic: + * + * |---------entropy pool----------| + * C var |--(word_i + 1)-|----word_i-----| + * bit idx |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0| + * [e,e,e,e,e,e,e,e|e,e,0,0,0,0,0,0] + * | [e,e,e,e,e,e,e,e] | + * | |--out[word_i]--| | + * lshift|---| |--rshift---| + * |e,e|0,0,0,0,0,0,0,0|0,0,0,0,0,0| + * |<== || ==>| + * bits_to_discard (from these bytes) + * + * variable(bits_to_discard): Tracks the amount of bits to be + * discarded and is updated accordingly in each iteration. + * + * It monitors these packed bits from respective word_i and + * word_i+1 and overwrites them with zeros accordingly. + * It discards linearly from the lowest index and moves upwards + * until bits_to_discard variable becomes zero. + * + * In the above diagram,for example, we pack 2bytes(7th and 6th + * from word_i) and 6bytes(0th till 5th from word_i+1), combine + * and pack them as 64bit to output buffer out[i]. + * Depending on the number of bits requested, we discard the + * bits from these packed bytes by overwriting them with zeros. + */ + + /* + * If the bits to be discarded is lesser than the amount of bits + * copied to the output buffer from word_i, we discard that much + * amount of bits only. + */ + if (bits_to_discard < (BITS_PER_WORD - rshift)) { + entropy[ENTROPY_WORD_INDEX(word_i)] &= + (~0ULL << ((bits_to_discard+rshift) % BITS_PER_WORD)); + bits_to_discard = 0; + } else { + /* + * If the bits to be discarded is more than the amount of valid + * upper bits from word_i, which has been copied to the output + * buffer, we just set the entire word_i to 0, as the lower bits + * will be already zeros from previous operations, and the + * bits_to_discard is updated precisely. + */ + entropy[ENTROPY_WORD_INDEX(word_i)] = 0; + bits_to_discard -= (BITS_PER_WORD - rshift); + } + /* * Note that a shift of 64 bits is treated as a shift of 0 bits. * When the shift amount is the same as the BITS_PER_WORD, we @@ -123,6 +180,35 @@ bool trng_pack_entropy(uint32_t nbits, uint64_t *out) if (lshift != BITS_PER_WORD) { out[word_i] |= entropy[ENTROPY_WORD_INDEX(word_i + 1)] << lshift; + /** + * Discarding the remaining packed bits from upperword + * (word[i+1]) which was copied to output buffer by + * overwriting with zeros. + * + * If the remaining bits to be discarded is lesser than + * the amount of bits from [word_i+1], which has been + * copied to the output buffer, we overwrite that much + * amount of bits only. + */ + if (bits_to_discard < (BITS_PER_WORD - lshift)) { + entropy[ENTROPY_WORD_INDEX(word_i+1)] &= + (~0ULL << ((bits_to_discard) % BITS_PER_WORD)); + bits_to_discard = 0; + } else { + /* + * If bits to discard is more than the bits from word_i+1 + * which got packed into the output, then we discard all + * those copied bits. + * + * Note: we cannot set the entire word_i+1 to 0, as + * there are still some unused valid entropy bits at the + * upper end for future use. + */ + entropy[ENTROPY_WORD_INDEX(word_i+1)] &= + (~0ULL << ((BITS_PER_WORD - lshift) % BITS_PER_WORD)); + bits_to_discard -= (BITS_PER_WORD - lshift); + } + } } const uint64_t mask = ~0ULL >> (BITS_PER_WORD - (nbits % BITS_PER_WORD));