Browse Source

feat(rk3588): support rk3588

rk3588 is an Octa-core soc with Cortex-a55/a76 inside.
This patch supports the following functions:
1. basic platform setup
2. power up/off cpus
3. suspend/resume cpus
4. suspend/resume system
5. reset system
6. power off system

Signed-off-by: XiaoDong Huang <derrick.huang@rock-chips.com>
Change-Id: I598109f15a2efd5b33aedd176cf708c08cb1dcf4
pull/2005/merge
XiaoDong Huang 1 year ago
parent
commit
e3ec6ff4b2
  1. 1
      docs/plat/rockchip.rst
  2. 51
      plat/rockchip/common/include/plat_pm_helpers.h
  3. 213
      plat/rockchip/common/plat_pm_helpers.c
  4. 21
      plat/rockchip/rk3588/drivers/pmu/plat_pmu_macros.S
  5. 555
      plat/rockchip/rk3588/drivers/pmu/pm_pd_regs.c
  6. 23
      plat/rockchip/rk3588/drivers/pmu/pm_pd_regs.h
  7. 1436
      plat/rockchip/rk3588/drivers/pmu/pmu.c
  8. 589
      plat/rockchip/rk3588/drivers/pmu/pmu.h
  9. 188
      plat/rockchip/rk3588/drivers/secure/secure.c
  10. 54
      plat/rockchip/rk3588/drivers/secure/secure.h
  11. 96
      plat/rockchip/rk3588/drivers/soc/soc.c
  12. 198
      plat/rockchip/rk3588/drivers/soc/soc.h
  13. 42
      plat/rockchip/rk3588/include/plat.ld.S
  14. 12
      plat/rockchip/rk3588/include/plat_sip_calls.h
  15. 119
      plat/rockchip/rk3588/include/platform_def.h
  16. 27
      plat/rockchip/rk3588/plat_sip_calls.c
  17. 85
      plat/rockchip/rk3588/platform.mk
  18. 221
      plat/rockchip/rk3588/rk3588_def.h

1
docs/plat/rockchip.rst

@ -11,6 +11,7 @@ This includes right now:
- rk3368: Octa-Core Cortex-A53
- rk3399: Hexa-Core Cortex-A53/A72
- rk3566/rk3568: Quad-Core Cortex-A55
- rk3588: Octa-Core Cortex-A55/A76
Boot Sequence

51
plat/rockchip/common/include/plat_pm_helpers.h

@ -0,0 +1,51 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef PLAT_PM_HELPERS_H
#define PLAT_PM_HELPERS_H
#include <stdint.h>
/**
* Use this macro to define a register region.
* start: start offset from the base address.
* end: end offset from the base address.
* stride: stride of registers in region.
* base: base address of registers in region.
* wmsk: write mask of registers in region.
*/
#define REG_REGION(_start, _end, _stride, _base, _wmsk) \
{ \
.start = (_base) + (_start), \
.end = (_base) + (_end), \
.stride = _stride, \
.wmsk = _wmsk \
}
struct reg_region {
/* Start address of region */
uint32_t start;
/* End address of region */
uint32_t end;
/* Stride of registers in region */
uint32_t stride;
/* Write mask of registers in region */
uint32_t wmsk;
/* Buffer to save/restore registers in region */
uint32_t *buf;
};
void rockchip_alloc_region_mem(struct reg_region *rgns, uint32_t rgn_num);
void rockchip_reg_rgn_save(struct reg_region *rgns, uint32_t rgn_num);
void rockchip_reg_rgn_restore(struct reg_region *rgns, uint32_t rgn_num);
void rockchip_reg_rgn_restore_reverse(struct reg_region *rgns, uint32_t rgn_num);
void rockchip_regs_dump(uint32_t base,
uint32_t start_offset,
uint32_t end_offset,
uint32_t stride);
void rockchip_dump_reg_rgns(struct reg_region *rgns, uint32_t rgn_num);
#endif /* PLAT_PM_HELPERS_H */

213
plat/rockchip/common/plat_pm_helpers.c

@ -0,0 +1,213 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <plat_pm_helpers.h>
#define ROCKCHIP_PM_REG_REGION_MEM_LEN (ROCKCHIP_PM_REG_REGION_MEM_SIZE / sizeof(uint32_t))
/* REG region */
#define RGN_LEN(_rgn) (((_rgn)->end - (_rgn)->start) / (_rgn)->stride + 1)
#ifndef ROCKCHIP_PM_REG_REGION_MEM_SIZE
#define ROCKCHIP_PM_REG_REGION_MEM_SIZE 0
#endif
#ifdef ROCKCHIP_REG_RGN_MEM_BASE
static uint32_t *region_mem = (uint32_t *)ROCKCHIP_REG_RGN_MEM_BASE;
#else
static uint32_t region_mem[ROCKCHIP_PM_REG_REGION_MEM_LEN];
#endif
static int region_mem_idx;
static int alloc_region_mem(uint32_t *buf, int max_len,
struct reg_region *rgns, uint32_t rgn_num)
{
int i;
int total_len = 0, len = 0;
struct reg_region *r = rgns;
assert(buf && rgns && rgn_num);
for (i = 0; i < rgn_num; i++, r++) {
if (total_len < max_len)
r->buf = &buf[total_len];
len = RGN_LEN(r);
total_len += len;
}
if (total_len > max_len) {
ERROR("%s The buffer remain length:%d is too small for region:0x%x, at least %d\n",
__func__, max_len, rgns[0].start, total_len);
panic();
}
return total_len;
}
/**
* Alloc memory to reg_region->buf from region_mem.
* @rgns - struct reg_region array.
* @rgn_num - struct reg_region array length.
*/
void rockchip_alloc_region_mem(struct reg_region *rgns, uint32_t rgn_num)
{
int max_len = 0, len;
assert(rgns && rgn_num);
max_len = ROCKCHIP_PM_REG_REGION_MEM_LEN - region_mem_idx;
len = alloc_region_mem(region_mem + region_mem_idx, max_len,
rgns, rgn_num);
region_mem_idx += len;
}
/**
* Save (reg_region->start ~ reg_region->end) to reg_region->buf.
* @rgns - struct reg_region array.
* @rgn_num - struct reg_region array length.
*/
void rockchip_reg_rgn_save(struct reg_region *rgns, uint32_t rgn_num)
{
struct reg_region *r;
uint32_t addr;
int i, j;
assert(rgns && rgn_num);
for (i = 0; i < rgn_num; i++) {
r = &rgns[i];
for (j = 0, addr = r->start; addr <= r->end; addr += r->stride, j++)
r->buf[j] = mmio_read_32(addr);
}
}
/**
* Restore reg_region->buf to (reg_region->start ~ reg_region->end).
* @rgns - struct reg_region array.
* @rgn_num - struct reg_region array length.
*/
void rockchip_reg_rgn_restore(struct reg_region *rgns, uint32_t rgn_num)
{
struct reg_region *r;
uint32_t addr;
int i, j;
assert(rgns && rgn_num);
for (i = 0; i < rgn_num; i++) {
r = &rgns[i];
for (j = 0, addr = r->start; addr <= r->end; addr += r->stride, j++)
mmio_write_32(addr, r->buf[j] | r->wmsk);
dsb();
}
}
/**
* Restore reg_region->buf to (reg_region->start ~ reg_region->end) reversely.
* @rgns - struct reg_region array.
* @rgn_num - struct reg_region array length.
*/
void rockchip_reg_rgn_restore_reverse(struct reg_region *rgns, uint32_t rgn_num)
{
struct reg_region *r;
uint32_t addr;
int i, j;
assert(rgns && rgn_num);
for (i = rgn_num - 1; i >= 0; i--) {
r = &rgns[i];
j = RGN_LEN(r) - 1;
for (addr = r->end; addr >= r->start; addr -= r->stride, j--)
mmio_write_32(addr, r->buf[j] | r->wmsk);
dsb();
}
}
static void rockchip_print_hex(uint32_t val)
{
int i;
unsigned char tmp;
putchar('0');
putchar('x');
for (i = 0; i < 8; val <<= 4, ++i) {
tmp = (val & 0xf0000000) >> 28;
if (tmp < 10)
putchar('0' + tmp);
else
putchar('a' + tmp - 10);
}
}
/**
* Dump registers (base + start_offset ~ base + end_offset)
* @base - the base addr of the register.
* @start_offset - the start offset to dump.
* @end_offset - the end offset to dump.
* @stride - the stride of the registers.
*/
void rockchip_regs_dump(uint32_t base,
uint32_t start_offset,
uint32_t end_offset,
uint32_t stride)
{
uint32_t i;
for (i = start_offset; i <= end_offset; i += stride) {
if ((i - start_offset) % 16 == 0) {
putchar('\n');
rockchip_print_hex(base + i);
putchar(':');
putchar(' ');
putchar(' ');
putchar(' ');
putchar(' ');
}
rockchip_print_hex(mmio_read_32(base + i));
putchar(' ');
putchar(' ');
putchar(' ');
putchar(' ');
}
putchar('\n');
}
/**
* Dump reg regions
* @rgns - struct reg_region array.
* @rgn_num - struct reg_region array length.
*/
void rockchip_dump_reg_rgns(struct reg_region *rgns, uint32_t rgn_num)
{
struct reg_region *r;
int i;
assert(rgns && rgn_num);
for (i = 0; i < rgn_num; i++) {
r = &rgns[i];
rockchip_regs_dump(0x0, r->start, r->end, r->stride);
}
}

21
plat/rockchip/rk3588/drivers/pmu/plat_pmu_macros.S

@ -0,0 +1,21 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <platform_def.h>
.globl clst_warmboot_data
.macro func_rockchip_clst_warmboot
.endm
.macro rockchip_clst_warmboot_data
clst_warmboot_data:
.rept PLATFORM_CLUSTER_COUNT
.word 0
.endr
.endm

555
plat/rockchip/rk3588/drivers/pmu/pm_pd_regs.c

@ -0,0 +1,555 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <pmu.h>
#include <plat_pm_helpers.h>
#include <plat_private.h>
#include <pm_pd_regs.h>
#include <soc.h>
#define WMSK_VAL 0xffff0000
static struct reg_region qos_reg_rgns[] = {
[QOS_ISP0_MWO] = REG_REGION(0x08, 0x18, 4, 0xfdf40500, 0),
[QOS_ISP0_MRO] = REG_REGION(0x08, 0x18, 4, 0xfdf40400, 0),
[QOS_ISP1_MWO] = REG_REGION(0x08, 0x18, 4, 0xfdf41000, 0),
[QOS_ISP1_MRO] = REG_REGION(0x08, 0x18, 4, 0xfdf41100, 0),
[QOS_VICAP_M0] = REG_REGION(0x08, 0x18, 4, 0xfdf40600, 0),
[QOS_VICAP_M1] = REG_REGION(0x08, 0x18, 4, 0xfdf40800, 0),
[QOS_FISHEYE0] = REG_REGION(0x08, 0x18, 4, 0xfdf40000, 0),
[QOS_FISHEYE1] = REG_REGION(0x08, 0x18, 4, 0xfdf40200, 0),
[QOS_VOP_M0] = REG_REGION(0x08, 0x18, 4, 0xfdf82000, 0),
[QOS_VOP_M1] = REG_REGION(0x08, 0x18, 4, 0xfdf82200, 0),
[QOS_RKVDEC0] = REG_REGION(0x08, 0x18, 4, 0xfdf62000, 0),
[QOS_RKVDEC1] = REG_REGION(0x08, 0x18, 4, 0xfdf63000, 0),
[QOS_AV1] = REG_REGION(0x08, 0x18, 4, 0xfdf64000, 0),
[QOS_RKVENC0_M0RO] = REG_REGION(0x08, 0x18, 4, 0xfdf60000, 0),
[QOS_RKVENC0_M1RO] = REG_REGION(0x08, 0x18, 4, 0xfdf60200, 0),
[QOS_RKVENC0_M2WO] = REG_REGION(0x08, 0x18, 4, 0xfdf60400, 0),
[QOS_RKVENC1_M0RO] = REG_REGION(0x08, 0x18, 4, 0xfdf61000, 0),
[QOS_RKVENC1_M1RO] = REG_REGION(0x08, 0x18, 4, 0xfdf61200, 0),
[QOS_RKVENC1_M2WO] = REG_REGION(0x08, 0x18, 4, 0xfdf61400, 0),
[QOS_DSU_M0] = REG_REGION(0x08, 0x18, 4, 0xfe008000, 0),
[QOS_DSU_M1] = REG_REGION(0x08, 0x18, 4, 0xfe008800, 0),
[QOS_DSU_MP] = REG_REGION(0x08, 0x18, 4, 0xfdf34200, 0),
[QOS_DEBUG] = REG_REGION(0x08, 0x18, 4, 0xfdf34400, 0),
[QOS_GPU_M0] = REG_REGION(0x08, 0x18, 4, 0xfdf35000, 0),
[QOS_GPU_M1] = REG_REGION(0x08, 0x18, 4, 0xfdf35200, 0),
[QOS_GPU_M2] = REG_REGION(0x08, 0x18, 4, 0xfdf35400, 0),
[QOS_GPU_M3] = REG_REGION(0x08, 0x18, 4, 0xfdf35600, 0),
[QOS_NPU1] = REG_REGION(0x08, 0x18, 4, 0xfdf70000, 0),
[QOS_NPU0_MRO] = REG_REGION(0x08, 0x18, 4, 0xfdf72200, 0),
[QOS_NPU2] = REG_REGION(0x08, 0x18, 4, 0xfdf71000, 0),
[QOS_NPU0_MWR] = REG_REGION(0x08, 0x18, 4, 0xfdf72000, 0),
[QOS_MCU_NPU] = REG_REGION(0x08, 0x18, 4, 0xfdf72400, 0),
[QOS_JPEG_DEC] = REG_REGION(0x08, 0x18, 4, 0xfdf66200, 0),
[QOS_JPEG_ENC0] = REG_REGION(0x08, 0x18, 4, 0xfdf66400, 0),
[QOS_JPEG_ENC1] = REG_REGION(0x08, 0x18, 4, 0xfdf66600, 0),
[QOS_JPEG_ENC2] = REG_REGION(0x08, 0x18, 4, 0xfdf66800, 0),
[QOS_JPEG_ENC3] = REG_REGION(0x08, 0x18, 4, 0xfdf66a00, 0),
[QOS_RGA2_MRO] = REG_REGION(0x08, 0x18, 4, 0xfdf66c00, 0),
[QOS_RGA2_MWO] = REG_REGION(0x08, 0x18, 4, 0xfdf66e00, 0),
[QOS_RGA3_0] = REG_REGION(0x08, 0x18, 4, 0xfdf67000, 0),
[QOS_RGA3_1] = REG_REGION(0x08, 0x18, 4, 0xfdf36000, 0),
[QOS_VDPU] = REG_REGION(0x08, 0x18, 4, 0xfdf67200, 0),
[QOS_IEP] = REG_REGION(0x08, 0x18, 4, 0xfdf66000, 0),
[QOS_HDCP0] = REG_REGION(0x08, 0x18, 4, 0xfdf80000, 0),
[QOS_HDCP1] = REG_REGION(0x08, 0x18, 4, 0xfdf81000, 0),
[QOS_HDMIRX] = REG_REGION(0x08, 0x18, 4, 0xfdf81200, 0),
[QOS_GIC600_M0] = REG_REGION(0x08, 0x18, 4, 0xfdf3a000, 0),
[QOS_GIC600_M1] = REG_REGION(0x08, 0x18, 4, 0xfdf3a200, 0),
[QOS_MMU600PCIE_TCU] = REG_REGION(0x08, 0x18, 4, 0xfdf3a400, 0),
[QOS_MMU600PHP_TBU] = REG_REGION(0x08, 0x18, 4, 0xfdf3a600, 0),
[QOS_MMU600PHP_TCU] = REG_REGION(0x08, 0x18, 4, 0xfdf3a800, 0),
[QOS_USB3_0] = REG_REGION(0x08, 0x18, 4, 0xfdf3e200, 0),
[QOS_USB3_1] = REG_REGION(0x08, 0x18, 4, 0xfdf3e000, 0),
[QOS_USBHOST_0] = REG_REGION(0x08, 0x18, 4, 0xfdf3e400, 0),
[QOS_USBHOST_1] = REG_REGION(0x08, 0x18, 4, 0xfdf3e600, 0),
[QOS_EMMC] = REG_REGION(0x08, 0x18, 4, 0xfdf38200, 0),
[QOS_FSPI] = REG_REGION(0x08, 0x18, 4, 0xfdf38000, 0),
[QOS_SDIO] = REG_REGION(0x08, 0x18, 4, 0xfdf39000, 0),
[QOS_DECOM] = REG_REGION(0x08, 0x18, 4, 0xfdf32000, 0),
[QOS_DMAC0] = REG_REGION(0x08, 0x18, 4, 0xfdf32200, 0),
[QOS_DMAC1] = REG_REGION(0x08, 0x18, 4, 0xfdf32400, 0),
[QOS_DMAC2] = REG_REGION(0x08, 0x18, 4, 0xfdf32600, 0),
[QOS_GIC600M] = REG_REGION(0x08, 0x18, 4, 0xfdf32800, 0),
[QOS_DMA2DDR] = REG_REGION(0x08, 0x18, 4, 0xfdf52000, 0),
[QOS_MCU_DDR] = REG_REGION(0x08, 0x18, 4, 0xfdf52200, 0),
[QOS_VAD] = REG_REGION(0x08, 0x18, 4, 0xfdf3b200, 0),
[QOS_MCU_PMU] = REG_REGION(0x08, 0x18, 4, 0xfdf3b000, 0),
[QOS_CRYPTOS] = REG_REGION(0x08, 0x18, 4, 0xfdf3d200, 0),
[QOS_CRYPTONS] = REG_REGION(0x08, 0x18, 4, 0xfdf3d000, 0),
[QOS_DCF] = REG_REGION(0x08, 0x18, 4, 0xfdf3d400, 0),
[QOS_SDMMC] = REG_REGION(0x08, 0x18, 4, 0xfdf3d800, 0),
};
static struct reg_region pd_crypto_reg_rgns[] = {
/* SECURE CRU */
REG_REGION(0x300, 0x30c, 4, SCRU_BASE, WMSK_VAL),
REG_REGION(0x800, 0x80c, 4, SCRU_BASE, WMSK_VAL),
REG_REGION(0xa00, 0xa0c, 4, SCRU_BASE, WMSK_VAL),
REG_REGION(0xd00, 0xd20, 8, SCRU_BASE, 0),
REG_REGION(0xd04, 0xd24, 8, SCRU_BASE, WMSK_VAL),
/* S TIMER0 6 channel */
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0x00, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0x00, 0),
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0x20, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0x20, 0),
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0x40, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0x40, 0),
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0x60, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0x60, 0),
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0x80, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0x80, 0),
REG_REGION(0x00, 0x04, 4, STIMER0_BASE + 0xa0, 0),
REG_REGION(0x10, 0x10, 4, STIMER0_BASE + 0xa0, 0),
/* S TIMER1 6 channel */
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0x00, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0x00, 0),
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0x20, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0x20, 0),
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0x40, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0x40, 0),
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0x60, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0x60, 0),
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0x80, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0x80, 0),
REG_REGION(0x00, 0x04, 4, STIMER1_BASE + 0xa0, 0),
REG_REGION(0x10, 0x10, 4, STIMER1_BASE + 0xa0, 0),
/* wdt_s */
REG_REGION(0x04, 0x04, 4, WDT_S_BASE, 0),
REG_REGION(0x00, 0x00, 4, WDT_S_BASE, 0),
};
static struct reg_region pd_dsu_reg_rgns[] = {
/* dsucru */
REG_REGION(0x040, 0x054, 4, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0x300, 0x31c, 4, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0x800, 0x80c, 4, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0xa00, 0xa0c, 4, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0xd00, 0xd20, 8, DSUCRU_BASE, 0),
REG_REGION(0xd04, 0xd24, 8, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0xf00, 0xf00, 4, DSUCRU_BASE, WMSK_VAL),
REG_REGION(0xf10, 0xf1c, 4, DSUCRU_BASE, 0),
/* bcore0cru */
REG_REGION(0x000, 0x014, 4, BIGCORE0CRU_BASE, WMSK_VAL),
REG_REGION(0x300, 0x304, 4, BIGCORE0CRU_BASE, WMSK_VAL),
REG_REGION(0x800, 0x804, 4, BIGCORE0CRU_BASE, WMSK_VAL),
REG_REGION(0xa00, 0xa04, 4, BIGCORE0CRU_BASE, WMSK_VAL),
REG_REGION(0xcc0, 0xcc4, 4, BIGCORE0CRU_BASE, 0),
REG_REGION(0xd00, 0xd00, 4, BIGCORE0CRU_BASE, 0),
REG_REGION(0xd04, 0xd04, 4, BIGCORE0CRU_BASE, WMSK_VAL),
/* bcore1cru */
REG_REGION(0x020, 0x034, 4, BIGCORE1CRU_BASE, WMSK_VAL),
REG_REGION(0x300, 0x304, 4, BIGCORE1CRU_BASE, WMSK_VAL),
REG_REGION(0x800, 0x804, 4, BIGCORE1CRU_BASE, WMSK_VAL),
REG_REGION(0xa00, 0xa04, 4, BIGCORE1CRU_BASE, WMSK_VAL),
REG_REGION(0xcc0, 0xcc4, 4, BIGCORE1CRU_BASE, 0),
REG_REGION(0xd00, 0xd00, 4, BIGCORE1CRU_BASE, 0),
REG_REGION(0xd04, 0xd04, 4, BIGCORE1CRU_BASE, WMSK_VAL),
/* dsugrf */
REG_REGION(0x00, 0x18, 4, DSUGRF_BASE, WMSK_VAL),
REG_REGION(0x20, 0x20, 4, DSUGRF_BASE, WMSK_VAL),
REG_REGION(0x28, 0x30, 4, DSUGRF_BASE, WMSK_VAL),
REG_REGION(0x38, 0x38, 4, DSUGRF_BASE, WMSK_VAL),
/* lcore_grf */
REG_REGION(0x20, 0x20, 4, LITCOREGRF_BASE, WMSK_VAL),
REG_REGION(0x28, 0x30, 4, LITCOREGRF_BASE, WMSK_VAL),
/* bcore0_grf */
REG_REGION(0x20, 0x20, 4, BIGCORE0GRF_BASE, WMSK_VAL),
REG_REGION(0x28, 0x30, 4, BIGCORE0GRF_BASE, WMSK_VAL),
/* bcore1_grf */
REG_REGION(0x20, 0x20, 4, BIGCORE1GRF_BASE, WMSK_VAL),
REG_REGION(0x28, 0x28, 4, BIGCORE1GRF_BASE, WMSK_VAL),
};
static struct reg_region pd_php_reg_rgns[] = {
/* php_grf */
REG_REGION(0x000, 0x008, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x014, 0x024, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x028, 0x02c, 4, PHPGRF_BASE, 0),
REG_REGION(0x030, 0x03c, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x05c, 0x060, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x064, 0x068, 4, PHPGRF_BASE, 0),
REG_REGION(0x070, 0x070, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x074, 0x0d0, 4, PHPGRF_BASE, 0),
REG_REGION(0x0d4, 0x0d4, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x0e0, 0x0e0, 4, PHPGRF_BASE, 0),
REG_REGION(0x0e4, 0x0ec, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x100, 0x104, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x10c, 0x130, 4, PHPGRF_BASE, 0),
REG_REGION(0x138, 0x138, 4, PHPGRF_BASE, WMSK_VAL),
REG_REGION(0x144, 0x168, 4, PHPGRF_BASE, 0),
REG_REGION(0x16c, 0x174, 4, PHPGRF_BASE, WMSK_VAL),
/* php_cru */
REG_REGION(0x200, 0x218, 4, PHP_CRU_BASE, WMSK_VAL),
REG_REGION(0x800, 0x800, 4, PHP_CRU_BASE, WMSK_VAL),
REG_REGION(0xa00, 0xa00, 4, PHP_CRU_BASE, WMSK_VAL),
/* pcie3phy_grf_cmn_con0 */
REG_REGION(0x00, 0x00, 4, PCIE3PHYGRF_BASE, WMSK_VAL),
};
void qos_save(void)
{
uint32_t pmu_pd_st0 = mmio_read_32(PMU_BASE + PMU2_PWR_GATE_ST(0));
if ((pmu_pd_st0 & BIT(PD_GPU)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GPU_M0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GPU_M1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GPU_M2], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GPU_M3], 1);
}
if ((pmu_pd_st0 & BIT(PD_NPU1)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_NPU1], 1);
if ((pmu_pd_st0 & BIT(PD_NPU2)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_NPU2], 1);
if ((pmu_pd_st0 & BIT(PD_NPUTOP)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_NPU0_MRO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_NPU0_MWR], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_MCU_NPU], 1);
}
if ((pmu_pd_st0 & BIT(PD_RKVDEC1)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVDEC1], 1);
if ((pmu_pd_st0 & BIT(PD_RKVDEC0)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVDEC0], 1);
if ((pmu_pd_st0 & BIT(PD_VENC1)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC1_M0RO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC1_M1RO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC1_M2WO], 1);
}
if ((pmu_pd_st0 & BIT(PD_VENC0)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC0_M0RO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC0_M1RO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RKVENC0_M2WO], 1);
}
if ((pmu_pd_st0 & BIT(PD_RGA30)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RGA3_0], 1);
if ((pmu_pd_st0 & BIT(PD_AV1)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_AV1], 1);
if ((pmu_pd_st0 & BIT(PD_VDPU)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_JPEG_DEC], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_JPEG_ENC0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_JPEG_ENC1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_JPEG_ENC2], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_JPEG_ENC3], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RGA2_MRO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RGA2_MWO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_VDPU], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_IEP], 1);
}
if ((pmu_pd_st0 & BIT(PD_VO0)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_HDCP0], 1);
if ((pmu_pd_st0 & BIT(PD_VO1)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_HDCP1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_HDMIRX], 1);
}
if ((pmu_pd_st0 & BIT(PD_VOP)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_VOP_M0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_VOP_M1], 1);
}
if ((pmu_pd_st0 & BIT(PD_FEC)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_FISHEYE0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_FISHEYE1], 1);
}
if ((pmu_pd_st0 & BIT(PD_ISP1)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_ISP1_MWO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_ISP1_MRO], 1);
}
if ((pmu_pd_st0 & BIT(PD_VI)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_ISP0_MWO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_ISP0_MRO], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_VICAP_M0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_VICAP_M1], 1);
}
if ((pmu_pd_st0 & BIT(PD_RGA31)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_RGA3_1], 1);
if ((pmu_pd_st0 & BIT(PD_USB)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_USB3_0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_USB3_1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_USBHOST_0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_USBHOST_1], 1);
}
if ((pmu_pd_st0 & BIT(PD_PHP)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GIC600_M0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_GIC600_M1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_MMU600PCIE_TCU], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_MMU600PHP_TBU], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_MMU600PHP_TCU], 1);
}
if ((pmu_pd_st0 & BIT(PD_SDIO)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_SDIO], 1);
if ((pmu_pd_st0 & BIT(PD_NVM0)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_FSPI], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_EMMC], 1);
}
if ((pmu_pd_st0 & BIT(PD_SDMMC)) == 0)
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_SDMMC], 1);
if ((pmu_pd_st0 & BIT(PD_CRYPTO)) == 0) {
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_CRYPTONS], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_CRYPTOS], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_DCF], 1);
}
/* PD_DSU */
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_DSU_M0], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_DSU_M1], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_DSU_MP], 1);
rockchip_reg_rgn_save(&qos_reg_rgns[QOS_DEBUG], 1);
}
void qos_restore(void)
{
uint32_t pmu_pd_st0 = mmio_read_32(PMU_BASE + PMU2_PWR_GATE_ST(0));
if ((pmu_pd_st0 & BIT(PD_GPU)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GPU_M0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GPU_M1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GPU_M2], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GPU_M3], 1);
}
if ((pmu_pd_st0 & BIT(PD_NPU1)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_NPU1], 1);
if ((pmu_pd_st0 & BIT(PD_NPU2)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_NPU2], 1);
if ((pmu_pd_st0 & BIT(PD_NPUTOP)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_NPU0_MRO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_NPU0_MWR], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_MCU_NPU], 1);
}
if ((pmu_pd_st0 & BIT(PD_RKVDEC1)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVDEC1], 1);
if ((pmu_pd_st0 & BIT(PD_RKVDEC0)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVDEC0], 1);
if ((pmu_pd_st0 & BIT(PD_VENC1)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC1_M0RO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC1_M1RO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC1_M2WO], 1);
}
if ((pmu_pd_st0 & BIT(PD_VENC0)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC0_M0RO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC0_M1RO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RKVENC0_M2WO], 1);
}
if ((pmu_pd_st0 & BIT(PD_RGA30)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RGA3_0], 1);
if ((pmu_pd_st0 & BIT(PD_AV1)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_AV1], 1);
if ((pmu_pd_st0 & BIT(PD_VDPU)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_JPEG_DEC], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_JPEG_ENC0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_JPEG_ENC1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_JPEG_ENC2], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_JPEG_ENC3], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RGA2_MRO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RGA2_MWO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_VDPU], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_IEP], 1);
}
if ((pmu_pd_st0 & BIT(PD_VO0)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_HDCP0], 1);
if ((pmu_pd_st0 & BIT(PD_VO1)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_HDCP1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_HDMIRX], 1);
}
if ((pmu_pd_st0 & BIT(PD_VOP)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_VOP_M0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_VOP_M1], 1);
}
if ((pmu_pd_st0 & BIT(PD_FEC)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_FISHEYE0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_FISHEYE1], 1);
}
if ((pmu_pd_st0 & BIT(PD_ISP1)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_ISP1_MWO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_ISP1_MRO], 1);
}
if ((pmu_pd_st0 & BIT(PD_VI)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_ISP0_MWO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_ISP0_MRO], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_VICAP_M0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_VICAP_M1], 1);
}
if ((pmu_pd_st0 & BIT(PD_RGA31)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_RGA3_1], 1);
if ((pmu_pd_st0 & BIT(PD_USB)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_USB3_0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_USB3_1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_USBHOST_0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_USBHOST_1], 1);
}
if ((pmu_pd_st0 & BIT(PD_PHP)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GIC600_M0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_GIC600_M1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_MMU600PCIE_TCU], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_MMU600PHP_TBU], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_MMU600PHP_TCU], 1);
}
if ((pmu_pd_st0 & BIT(PD_SDIO)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_SDIO], 1);
if ((pmu_pd_st0 & BIT(PD_NVM0)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_FSPI], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_EMMC], 1);
}
if ((pmu_pd_st0 & BIT(PD_SDMMC)) == 0)
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_SDMMC], 1);
if ((pmu_pd_st0 & BIT(PD_CRYPTO)) == 0) {
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_CRYPTONS], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_CRYPTOS], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_DCF], 1);
}
/* PD_DSU */
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_DSU_M0], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_DSU_M1], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_DSU_MP], 1);
rockchip_reg_rgn_restore(&qos_reg_rgns[QOS_DEBUG], 1);
}
void pd_crypto_save(void)
{
rockchip_reg_rgn_save(pd_crypto_reg_rgns, ARRAY_SIZE(pd_crypto_reg_rgns));
}
void pd_crypto_restore(void)
{
rockchip_reg_rgn_restore(pd_crypto_reg_rgns, ARRAY_SIZE(pd_crypto_reg_rgns));
}
static uint32_t b0_cru_mode;
static uint32_t b1_cru_mode;
static uint32_t dsu_cru_mode;
static uint32_t bcore0_cru_sel_con2, bcore1_cru_sel_con2;
void pd_dsu_core_save(void)
{
b0_cru_mode = mmio_read_32(BIGCORE0CRU_BASE + 0x280);
b1_cru_mode = mmio_read_32(BIGCORE1CRU_BASE + 0x280);
dsu_cru_mode = mmio_read_32(DSUCRU_BASE + 0x280);
bcore0_cru_sel_con2 = mmio_read_32(BIGCORE0CRU_BASE + CRU_CLKSEL_CON(2));
bcore1_cru_sel_con2 = mmio_read_32(BIGCORE1CRU_BASE + CRU_CLKSEL_CON(2));
rockchip_reg_rgn_save(pd_dsu_reg_rgns, ARRAY_SIZE(pd_dsu_reg_rgns));
}
void pd_dsu_core_restore(void)
{
/* switch bcore0/1 pclk root to 24M */
mmio_write_32(BIGCORE0CRU_BASE + CRU_CLKSEL_CON(2),
BITS_WITH_WMASK(2, 0x3, 0));
mmio_write_32(BIGCORE1CRU_BASE + CRU_CLKSEL_CON(2),
BITS_WITH_WMASK(2, 0x3, 0));
/* slow mode */
mmio_write_32(BIGCORE0CRU_BASE + 0x280, 0x00030000);
mmio_write_32(BIGCORE1CRU_BASE + 0x280, 0x00030000);
mmio_write_32(DSUCRU_BASE + 0x280, 0x00030000);
rockchip_reg_rgn_restore(pd_dsu_reg_rgns, ARRAY_SIZE(pd_dsu_reg_rgns));
/* trigger dsu/lcore/bcore mem_cfg */
mmio_write_32(DSUGRF_BASE + 0x18, BITS_WITH_WMASK(1, 0x1, 14));
mmio_write_32(LITCOREGRF_BASE + 0x30, BITS_WITH_WMASK(1, 0x1, 5));
mmio_write_32(BIGCORE0GRF_BASE + 0x30, BITS_WITH_WMASK(1, 0x1, 5));
mmio_write_32(BIGCORE1GRF_BASE + 0x30, BITS_WITH_WMASK(1, 0x1, 5));
udelay(1);
mmio_write_32(DSUGRF_BASE + 0x18, BITS_WITH_WMASK(0, 0x1, 14));
mmio_write_32(LITCOREGRF_BASE + 0x30, BITS_WITH_WMASK(0, 0x1, 5));
mmio_write_32(BIGCORE0GRF_BASE + 0x30, BITS_WITH_WMASK(0, 0x1, 5));
mmio_write_32(BIGCORE1GRF_BASE + 0x30, BITS_WITH_WMASK(0, 0x1, 5));
/* wait lock */
pm_pll_wait_lock(BIGCORE0CRU_BASE + 0x00);
pm_pll_wait_lock(BIGCORE1CRU_BASE + 0x20);
pm_pll_wait_lock(DSUCRU_BASE + 0x40);
/* restore mode */
mmio_write_32(BIGCORE0CRU_BASE + 0x280, WITH_16BITS_WMSK(b0_cru_mode));
mmio_write_32(BIGCORE1CRU_BASE + 0x280, WITH_16BITS_WMSK(b1_cru_mode));
mmio_write_32(DSUCRU_BASE + 0x280, WITH_16BITS_WMSK(dsu_cru_mode));
mmio_write_32(BIGCORE0CRU_BASE + CRU_CLKSEL_CON(2),
WITH_16BITS_WMSK(bcore0_cru_sel_con2));
mmio_write_32(BIGCORE1CRU_BASE + CRU_CLKSEL_CON(2),
WITH_16BITS_WMSK(bcore1_cru_sel_con2));
}
static uint32_t php_ppll_con0;
void pd_php_save(void)
{
php_ppll_con0 = mmio_read_32(PHP_CRU_BASE + 0x200);
/* php_ppll bypass */
mmio_write_32(PHP_CRU_BASE + 0x200, BITS_WITH_WMASK(1u, 1u, 15));
dsb();
isb();
rockchip_reg_rgn_save(pd_php_reg_rgns, ARRAY_SIZE(pd_php_reg_rgns));
}
void pd_php_restore(void)
{
rockchip_reg_rgn_restore(pd_php_reg_rgns, ARRAY_SIZE(pd_php_reg_rgns));
pm_pll_wait_lock(PHP_CRU_BASE + 0x200);
/* restore php_ppll bypass */
mmio_write_32(PHP_CRU_BASE + 0x200, WITH_16BITS_WMSK(php_ppll_con0));
}
void pm_reg_rgns_init(void)
{
rockchip_alloc_region_mem(qos_reg_rgns, ARRAY_SIZE(qos_reg_rgns));
rockchip_alloc_region_mem(pd_crypto_reg_rgns, ARRAY_SIZE(pd_crypto_reg_rgns));
rockchip_alloc_region_mem(pd_dsu_reg_rgns, ARRAY_SIZE(pd_dsu_reg_rgns));
rockchip_alloc_region_mem(pd_php_reg_rgns, ARRAY_SIZE(pd_php_reg_rgns));
}

23
plat/rockchip/rk3588/drivers/pmu/pm_pd_regs.h

@ -0,0 +1,23 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef PM_PD_REGS_H
#define PM_PD_REGS_H
#include <stdint.h>
void qos_save(void);
void qos_restore(void);
void pd_crypto_save(void);
void pd_crypto_restore(void);
void pd_dsu_core_save(void);
void pd_dsu_core_restore(void);
void pd_php_save(void);
void pd_php_restore(void);
void pm_reg_rgns_init(void);
#endif

1436
plat/rockchip/rk3588/drivers/pmu/pmu.c

File diff suppressed because it is too large

589
plat/rockchip/rk3588/drivers/pmu/pmu.h

@ -0,0 +1,589 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PMU_H__
#define __PMU_H__
#include <lib/mmio.h>
#define PMU0_PWR_CON 0x0000
#define PMU0_WAKEUP_INT_CON 0x0008
#define PMU0_WAKEUP_INT_ST 0x000c
#define PMU0_PMIC_STABLE_CNT_THRES 0x0010
#define PMU0_WAKEUP_RST_CLR_CNT_THRES 0x0014
#define PMU0_OSC_STABLE_CNT_THRES 0x0018
#define PMU0_PWR_CHAIN_STABLE_CON 0x001c
#define PMU0_DDR_RET_CON(i) (0x0020 + (i) * 4)
#define PMU0_INFO_TX_CON 0x0030
#define PMU1_VERSION_ID 0x4000
#define PMU1_PWR_CON 0x4004
#define PMU1_PWR_FSM 0x4008
#define PMU1_INT_MASK_CON 0x400c
#define PMU1_WAKEUP_INT_CON 0x4010
#define PMU1_WAKEUP_INT_ST 0x4014
#define PMU1_WAKEUP_EDGE_CON 0x4018
#define PMU1_WAKEUP_EDGE_ST 0x401c
#define PMU1_DDR_PWR_CON(i) (0x4020 + (i) * 4)
#define PMU1_DDR_PWR_SFTCON(i) (0x4030 + (i) * 4)
#define PMU1_DDR_PWR_FSM 0x4040
#define PMU1_DDR_PWR_ST 0x4044
#define PMU1_CRU_PWR_CON 0x4050
#define PMU1_CRU_PWR_SFTCON 0x4054
#define PMU1_CRU_PWR_FSM 0x4058
#define PMU1_PLLPD_CON(i) (0x4060 + (i) * 4)
#define PMU1_PLLPD_SFTCON(i) (0x4068 + (i) * 4)
#define PMU1_STABLE_CNT_THRESH 0x4080
#define PMU1_OSC_STABLE_CNT_THRESH 0x4084
#define PMU1_WAKEUP_RST_CLR_CNT_THRESH 0x4088
#define PMU1_PLL_LOCK_CNT_THRESH 0x408c
#define PMU1_WAKEUP_TIMEOUT_THRESH 0x4094
#define PMU1_PWM_SWITCH_CNT_THRESH 0x4098
#define PMU1_SYS_REG(i) (0x4100 + (i) * 4)
#define PMU2_PWR_CON1 0x8000
#define PMU2_DSU_PWR_CON 0x8004
#define PMU2_DSU_PWR_SFTCON 0x8008
#define PMU2_DSU_AUTO_PWR_CON 0x800c
#define PMU2_CPU_AUTO_PWR_CON(i) (0x8010 + (i) * 4)
#define PMU2_CPU_PWR_SFTCON(i) (0x8030 + (i) * 4)
#define PMU2_CORE_PWR_CON(i) (0x8050 + (i) * 4)
#define PMU2_CORE_PWR_SFTCON(i) (0x8058 + (i) * 4)
#define PMU2_CORE_AUTO_PWR_CON(i) (0x8060 + (i) * 4)
#define PMU2_CLUSTER_NOC_AUTO_CON 0x8068
#define PMU2_CLUSTER_DBG_PWR_CON 0x806c
#define PMU2_CLUSTER_IDLE_CON 0x8070
#define PMU2_CLUSTER_IDLE_SFTCON 0x8074
#define PMU2_CLUSTER_IDLE_ACK 0x8078
#define PMU2_CLUSTER_IDLE_ST 0x807c
#define PMU2_CLUSTER_ST 0x8080
#define PMU2_SCU_PWR_FSM_STATUS(i) (0x8084 + (i) * 4)
#define PMU2_CORE_PCHANNEL_STATUS(i) (0x808c + (i) * 4)
#define PMU2_CPU_PWR_CHAIN_STABLE_CON 0x8098
#define PMU2_CLUSTER_MEMPWR_GATE_SFTCON 0x809c
#define PMU2_DSU_STABLE_CNT_THRESH 0x80b0
#define PMU2_DSU_PWRUP_CNT_THRESH 0x80b4
#define PMU2_DSU_PWRDN_CNT_THRESH 0x80b8
#define PMU2_CORE0_STABLE_CNT_THRESH 0x80bc
#define PMU2_CORE0_PWRUP_CNT_THRESH 0x80c0
#define PMU2_CORE0_PWRDN_CNT_THRESH 0x80c4
#define PMU2_CORE1_STABLE_CNT_THRESH 0x80c8
#define PMU2_CORE1_PWRUP_CNT_THRESH 0x80cc
#define PMU2_CORE1_PWRDN_CNT_THRESH 0x80d0
#define PMU2_DBG_RST_CNT_THRESH(i) (0x80d4 + (i) * 4)
#define PMU2_BUS_IDLE_CON(i) (0x8100 + (i) * 4)
#define PMU2_BUS_IDLE_SFTCON(i) (0x810c + (i) * 4)
#define PMU2_BUS_IDLE_ACK(i) (0x8118 + (i) * 4)
#define PMU2_BUS_IDLE_ST(i) (0x8120 + (i) * 4)
#define PMU2_BIU_AUTO_CON(i) (0x8128 + (i) * 4)
#define PMU2_PWR_GATE_CON(i) (0x8140 + (i) * 4)
#define PMU2_PWR_GATE_SFTCON(i) (0x814c + (i) * 4)
#define PMU2_VOL_GATE_CON(i) (0x8158 + (i) * 4)
#define PMU2_PWR_UP_CHAIN_STABLE_CON(i) (0x8164 + (i) * 4)
#define PMU2_PWR_DWN_CHAIN_STABLE_CON(i)(0x8170 + (i) * 4)
#define PMU2_PWR_STABLE_CHAIN_CNT_THRES 0x817c
#define PMU2_PWR_GATE_ST(i) (0x8180 + (i) * 4)
#define PMU2_PWR_GATE_FSM 0x8188
#define PMU2_VOL_GATE_FAST_CON 0x818c
#define PMU2_GPU_PWRUP_CNT 0x8190
#define PMU2_GPU_PWRDN_CNT 0x8194
#define PMU2_NPU_PWRUP_CNT 0x8198
#define PMU2_NPU_PWRDN_CNT 0x819c
#define PMU2_MEMPWR_GATE_SFTCON(i) (0x81a0 + (i) * 4)
#define PMU2_MEMPWR_MD_GATE_SFTCON(i) (0x81b0 + (i) * 4)
#define PMU2_MEMPWR_MD_GATE_STATUS 0x81bc
#define PMU2_SUBMEM_PWR_ACK_BYPASS(i) (0x81c0 + (i) * 4)
#define PMU2_QCHANNEL_PWR_CON 0x81d0
#define PMU2_QCHANNEL_PWR_SFTCON 0x81d4
#define PMU2_QCHANNEL_STATUS 0x81d8
#define PMU2_DEBUG_INFO_SEL 0x81e0
#define PMU2_VOP_SUBPD_STATE 0x81e4
#define PMU2_PWR_CHAIN0_ST(i) (0x81e8 + (i) * 4)
#define PMU2_PWR_CHAIN1_ST(i) (0x81f0 + (i) * 4)
#define PMU2_PWR_MEM_ST(i) (0x81f8 + (i) * 4)
#define PMU2_BISR_CON(i) (0x8200 + (i) * 4)
#define PMU2_BISR_STATUS(i) (0x8280 + (i) * 4)
#define PMU2_QCH_PWR_MSK 0x7f
#define PD_CTR_LOOP 500
#define PD_CHECK_LOOP 500
#define WFEI_CHECK_LOOP 500
#define BUS_IDLE_LOOP 1000
#define QCH_PWR_LOOP 5000
/* PMU1SCRU */
#define PMU1SCRU_GATE_CON(i) (0x800 + (i) * 4)
/* PMU_GRF */
#define PMU0_GRF_SOC_CON(i) ((i) * 4)
#define PMU0_GRF_OS_REGS(i) (0x80 + ((i) - 8) * 4)
#define PMU1_GRF_SOC_CON(i) ((i) * 4)
#define PMU0_GRF_IO_RET_CON(i) (0x20 + (i) * 4)
/* PMU_SGRF */
#define PMU0_SGRF_SOC_CON(i) ((i) * 4)
#define PMU1_SGRF_SOC_CON(i) ((i) * 4)
/* sys grf */
#define GRF_CPU_STATUS0 0x0420
#define CORES_PM_DISABLE 0x0
#define PD_CHECK_LOOP 500
#define WFEI_CHECK_LOOP 500
/* The ways of cores power domain contorlling */
enum cores_pm_ctr_mode {
core_pwr_pd = 0,
core_pwr_wfi = 1,
core_pwr_wfi_int = 2
};
/* PMU0_PWR_CON */
enum pmu0_pwr_con {
pmu0_powermode_en = 0,
pmu0_pmu1_pwr_bypass = 1,
pmu0_pmu1_bus_bypass = 2,
pmu0_wkup_bypass = 3,
pmu0_pmic_bypass = 4,
pmu0_reset_bypass = 5,
pmu0_freq_sw_bypass = 6,
pmu0_osc_dis_bypass = 7,
pmu0_pmu1_pwr_gt_en = 8,
pmu0_pmu1_pwr_gt_sft_en = 9,
pmu0_pmu1_mem_gt_sft_en = 10,
pmu0_pmu1_bus_idle_en = 11,
pmu0_pmu1_bus_idle_sft_en = 12,
pmu0_pmu1_biu_auto_en = 13,
pmu0_pwr_off_io_en = 14,
};
/* PMU1_PWR_CON */
enum pmu1_pwr_con {
powermode_en = 0,
dsu_bypass = 1,
bus_bypass = 4,
ddr_bypass = 5,
pwrdn_bypass = 6,
cru_bypass = 7,
qch_bypass = 8,
core_bypass = 9,
cpu_sleep_wfi_dis = 12,
};
/* PMU1_DDR_PWR_CON */
enum pmu1_ddr_pwr_con {
ddr_sref_en = 0,
ddr_sref_a_en = 1,
ddrio_ret_en = 2,
ddrio_ret_exit_en = 5,
ddrio_rstiov_en = 6,
ddrio_rstiov_exit_en = 7,
ddr_gating_a_en = 8,
ddr_gating_c_en = 9,
ddr_gating_p_en = 10,
};
/* PMU_CRU_PWR_CON */
enum pmu1_cru_pwr_con {
alive_32k_en = 0,
osc_dis_en = 1,
wakeup_rst_en = 2,
input_clamp_en = 3,
alive_osc_mode_en = 4,
power_off_en = 5,
pwm_switch_en = 6,
pwm_gpio_ioe_en = 7,
pwm_switch_io = 8,
pd_clk_src_gate_en = 9,
};
/* PMU_PLLPD_CON */
enum pmu1_pllpd_con {
B0PLL_PD_EN,
B1PLL_PD_EN,
LPLL_PD_EN,
D0APLL_PD_EN,
D0BPLL_PD_EN,
D1APLL_PD_EN,
D1BPLL_PD_EN,
D2APLL_PD_EN,
D2BPLL_PD_EN,
D3APLL_PD_EN,
D3BPLL_PD_EN,
V0PLL_PD_EN,
AUPLL_PD_EN,
GPLL_PD_EN,
CPLL_PD_EN,
NPLL_PD_EN,
PPLL_PD_EN = 0,
SPLL_PD_EN = 1,
};
enum pmu1_wakeup_int {
WAKEUP_CPU0_INT_EN,
WAKEUP_CPU1_INT_EN,
WAKEUP_CPU2_INT_EN,
WAKEUP_CPU3_INT_EN,
WAKEUP_CPU4_INT_EN,
WAKEUP_CPU5_INT_EN,
WAKEUP_CPU6_INT_EN,
WAKEUP_CPU7_INT_EN,
WAKEUP_GPIO0_INT_EN,
WAKEUP_SDMMC_EN,
WAKEUP_SDIO_EN,
WAKEUP_USBDEV_EN,
WAKEUP_UART0_EN,
WAKEUP_VAD_EN,
WAKEUP_TIMER_EN,
WAKEUP_SOC_INT_EN,
WAKEUP_TIMEROUT_EN,
WAKEUP_PMUMCU_CEC_EN = 20,
};
enum pmu2_dsu_auto_pwr_con {
dsu_pm_en = 0,
dsu_pm_int_wakeup_en = 1,
dsu_pm_sft_wakeup_en = 3,
};
enum pmu2_cpu_auto_pwr_con {
cpu_pm_en = 0,
cpu_pm_int_wakeup_en = 1,
cpu_pm_sft_wakeup_en = 3,
};
enum pmu2_core_auto_pwr_con {
core_pm_en = 0,
core_pm_int_wakeup_en = 1,
core_pm_int_wakeup_glb_msk = 2,
core_pm_sft_wakeup_en = 3,
};
enum pmu2_dsu_power_con {
DSU_PWRDN_EN,
DSU_PWROFF_EN,
BIT_FULL_EN,
DSU_RET_EN,
CLUSTER_CLK_SRC_GT_EN,
};
enum pmu2_core_power_con {
CORE_PWRDN_EN,
CORE_PWROFF_EN,
CORE_CPU_PWRDN_EN,
CORE_PWR_CNT_EN,
};
enum pmu2_cluster_idle_con {
IDLE_REQ_BIGCORE0_EN = 0,
IDLE_REQ_BIGCORE1_EN = 2,
IDLE_REQ_DSU_EN = 4,
IDLE_REQ_LITDSU_EN = 5,
IDLE_REQ_ADB400_CORE_QCH_EN = 6,
};
enum qos_id {
QOS_ISP0_MWO = 0,
QOS_ISP0_MRO = 1,
QOS_ISP1_MWO = 2,
QOS_ISP1_MRO = 3,
QOS_VICAP_M0 = 4,
QOS_VICAP_M1 = 5,
QOS_FISHEYE0 = 6,
QOS_FISHEYE1 = 7,
QOS_VOP_M0 = 8,
QOS_VOP_M1 = 9,
QOS_RKVDEC0 = 10,
QOS_RKVDEC1 = 11,
QOS_AV1 = 12,
QOS_RKVENC0_M0RO = 13,
QOS_RKVENC0_M1RO = 14,
QOS_RKVENC0_M2WO = 15,
QOS_RKVENC1_M0RO = 16,
QOS_RKVENC1_M1RO = 17,
QOS_RKVENC1_M2WO = 18,
QOS_DSU_M0 = 19,
QOS_DSU_M1 = 20,
QOS_DSU_MP = 21,
QOS_DEBUG = 22,
QOS_GPU_M0 = 23,
QOS_GPU_M1 = 24,
QOS_GPU_M2 = 25,
QOS_GPU_M3 = 26,
QOS_NPU1 = 27,
QOS_NPU0_MRO = 28,
QOS_NPU2 = 29,
QOS_NPU0_MWR = 30,
QOS_MCU_NPU = 31,
QOS_JPEG_DEC = 32,
QOS_JPEG_ENC0 = 33,
QOS_JPEG_ENC1 = 34,
QOS_JPEG_ENC2 = 35,
QOS_JPEG_ENC3 = 36,
QOS_RGA2_MRO = 37,
QOS_RGA2_MWO = 38,
QOS_RGA3_0 = 39,
QOS_RGA3_1 = 40,
QOS_VDPU = 41,
QOS_IEP = 42,
QOS_HDCP0 = 43,
QOS_HDCP1 = 44,
QOS_HDMIRX = 45,
QOS_GIC600_M0 = 46,
QOS_GIC600_M1 = 47,
QOS_MMU600PCIE_TCU = 48,
QOS_MMU600PHP_TBU = 49,
QOS_MMU600PHP_TCU = 50,
QOS_USB3_0 = 51,
QOS_USB3_1 = 52,
QOS_USBHOST_0 = 53,
QOS_USBHOST_1 = 54,
QOS_EMMC = 55,
QOS_FSPI = 56,
QOS_SDIO = 57,
QOS_DECOM = 58,
QOS_DMAC0 = 59,
QOS_DMAC1 = 60,
QOS_DMAC2 = 61,
QOS_GIC600M = 62,
QOS_DMA2DDR = 63,
QOS_MCU_DDR = 64,
QOS_VAD = 65,
QOS_MCU_PMU = 66,
QOS_CRYPTOS = 67,
QOS_CRYPTONS = 68,
QOS_DCF = 69,
QOS_SDMMC = 70,
};
enum pmu2_pdid {
PD_GPU = 0,
PD_NPU = 1,
PD_VCODEC = 2,
PD_NPUTOP = 3,
PD_NPU1 = 4,
PD_NPU2 = 5,
PD_VENC0 = 6,
PD_VENC1 = 7,
PD_RKVDEC0 = 8,
PD_RKVDEC1 = 9,
PD_VDPU = 10,
PD_RGA30 = 11,
PD_AV1 = 12,
PD_VI = 13,
PD_FEC = 14,
PD_ISP1 = 15,
PD_RGA31 = 16,
PD_VOP = 17,
PD_VO0 = 18,
PD_VO1 = 19,
PD_AUDIO = 20,
PD_PHP = 21,
PD_GMAC = 22,
PD_PCIE = 23,
PD_NVM = 24,
PD_NVM0 = 25,
PD_SDIO = 26,
PD_USB = 27,
PD_SECURE = 28,
PD_SDMMC = 29,
PD_CRYPTO = 30,
PD_CENTER = 31,
PD_DDR01 = 32,
PD_DDR23 = 33,
};
enum pmu2_pd_repair_id {
PD_RPR_PMU = 0,
PD_RPR_GPU = 1,
PD_RPR_NPUTOP = 2,
PD_RPR_NPU1 = 3,
PD_RPR_NPU2 = 4,
PD_RPR_VENC0 = 5,
PD_RPR_VENC1 = 6,
PD_RPR_RKVDEC0 = 7,
PD_RPR_RKVDEC1 = 8,
PD_RPR_VDPU = 9,
PD_RPR_RGA30 = 10,
PD_RPR_AV1 = 11,
PD_RPR_VI = 12,
PD_RPR_FEC = 13,
PD_RPR_ISP1 = 14,
PD_RPR_RGA31 = 15,
PD_RPR_VOP = 16,
PD_RPR_VO0 = 17,
PD_RPR_VO1 = 18,
PD_RPR_AUDIO = 19,
PD_RPR_PHP = 20,
PD_RPR_GMAC = 21,
PD_RPR_PCIE = 22,
PD_RPR_NVM0 = 23,
PD_RPR_SDIO = 24,
PD_RPR_USB = 25,
PD_RPR_SDMMC = 26,
PD_RPR_CRYPTO = 27,
PD_RPR_CENTER = 28,
PD_RPR_DDR01 = 29,
PD_RPR_DDR23 = 30,
PD_RPR_BUS = 31,
};
enum pmu2_bus_id {
BUS_ID_GPU = 0,
BUS_ID_NPUTOP = 1,
BUS_ID_NPU1 = 2,
BUS_ID_NPU2 = 3,
BUS_ID_RKVENC0 = 4,
BUS_ID_RKVENC1 = 5,
BUS_ID_RKVDEC0 = 6,
BUS_ID_RKVDEC1 = 7,
BUS_ID_VDPU = 8,
BUS_ID_AV1 = 9,
BUS_ID_VI = 10,
BUS_ID_ISP = 11,
BUS_ID_RGA31 = 12,
BUS_ID_VOP = 13,
BUS_ID_VOP_CHANNEL = 14,
BUS_ID_VO0 = 15,
BUS_ID_VO1 = 16,
BUS_ID_AUDIO = 17,
BUS_ID_NVM = 18,
BUS_ID_SDIO = 19,
BUS_ID_USB = 20,
BUS_ID_PHP = 21,
BUS_ID_VO1USBTOP = 22,
BUS_ID_SECURE = 23,
BUS_ID_SECURE_CENTER_CHANNEL = 24,
BUS_ID_SECURE_VO1USB_CHANNEL = 25,
BUS_ID_CENTER = 26,
BUS_ID_CENTER_CHANNEL = 27,
BUS_ID_MSCH0 = 28,
BUS_ID_MSCH1 = 29,
BUS_ID_MSCH2 = 30,
BUS_ID_MSCH3 = 31,
BUS_ID_MSCH = 32,
BUS_ID_BUS = 33,
BUS_ID_TOP = 34,
};
enum pmu2_mem_st {
PD_NPU_TOP_MEM_ST = 11,
PD_NPU1_MEM_ST = 12,
PD_NPU2_MEM_ST = 13,
PD_VENC0_MEM_ST = 14,
PD_VENC1_MEM_ST = 15,
PD_RKVDEC0_MEM_ST = 16,
PD_RKVDEC1_MEM_ST = 17,
PD_RGA30_MEM_ST = 19,
PD_AV1_MEM_ST = 20,
PD_VI_MEM_ST = 21,
PD_FEC_MEM_ST = 22,
PD_ISP1_MEM_ST = 23,
PD_RGA31_MEM_ST = 24,
PD_VOP_MEM_ST = 25,
PD_VO0_MEM_ST = 26,
PD_VO1_MEM_ST = 27,
PD_AUDIO_MEM_ST = 28,
PD_PHP_MEM_ST = 29,
PD_GMAC_MEM_ST = 30,
PD_PCIE_MEM_ST = 31,
PD_NVM0_MEM_ST = 33,
PD_SDIO_MEM_ST = 34,
PD_USB_MEM_ST = 35,
PD_SDMMC_MEM_ST = 37,
};
enum pmu2_qid {
QID_PHPMMU_TBU = 0,
QID_PHPMMU_TCU = 1,
QID_PCIEMMU_TBU0 = 2,
QID_PCIEMU_TCU = 3,
QID_PHP_GICITS = 4,
QID_BUS_GICITS0 = 5,
QID_BUS_GICITS1 = 6,
};
/* PMU_DSU_PWR_CON */
enum pmu_dsu_pwr_con {
DSU_PWRDN_ENA = 2,
DSU_PWROFF_ENA,
DSU_RET_ENA = 6,
CLUSTER_CLK_SRC_GATE_ENA,
DSU_PWR_CON_END
};
enum cpu_power_state {
CPU_POWER_ON,
CPU_POWER_OFF,
CPU_EMULATION_OFF,
CPU_RETENTION,
CPU_DEBUG
};
enum dsu_power_state {
DSU_POWER_ON,
CLUSTER_TRANSFER_IDLE,
DSU_POWER_DOWN,
DSU_OFF,
DSU_WAKEUP,
DSU_POWER_UP,
CLUSTER_TRANSFER_RESUME,
DSU_FUNCTION_RETENTION
};
/* PMU2_CLUSTER_STS 0x8080 */
enum pmu2_cluster_sts_bits {
pd_cpu0_dwn = 0,
pd_cpu1_dwn,
pd_cpu2_dwn,
pd_cpu3_dwn,
pd_cpu4_dwn,
pd_cpu5_dwn,
pd_cpu6_dwn,
pd_cpu7_dwn,
pd_core0_dwn,
pd_core1_dwn
};
#define CLUSTER_STS_NONBOOT_CPUS_DWN 0xfe
enum cpu_off_trigger {
CPU_OFF_TRIGGER_WFE = 0,
CPU_OFF_TRIGGER_REQ_EML,
CPU_OFF_TRIGGER_REQ_WFI,
CPU_OFF_TRIGGER_REQ_WFI_NBT_CPU,
CPU_OFF_TRIGGER_REQ_WFI_NBT_CPU_SRAM
};
/*****************************************************************************
* power domain on or off
*****************************************************************************/
enum pmu_pd_state {
pmu_pd_on = 0,
pmu_pd_off = 1
};
enum bus_state {
bus_active,
bus_idle,
};
#define RK_CPU_STATUS_OFF 0
#define RK_CPU_STATUS_ON 1
#define RK_CPU_STATUS_BUSY -1
#define PD_CTR_LOOP 500
#define MAX_WAIT_COUNT 500
#define pmu_bus_idle_st(id) \
(!!(mmio_read_32(PMU_BASE + PMU2_BUS_IDLE_ST((id) / 32)) & BIT((id) % 32)))
#define pmu_bus_idle_ack(id) \
(!!(mmio_read_32(PMU_BASE + PMU2_BUS_IDLE_ACK((id) / 32)) & BIT((id) % 32)))
void pm_pll_wait_lock(uint32_t pll_base);
#endif /* __PMU_H__ */

188
plat/rockchip/rk3588/drivers/secure/secure.c

@ -0,0 +1,188 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <lib/mmio.h>
#include <platform_def.h>
#include <secure.h>
#include <soc.h>
static void secure_fw_master_init(void)
{
uint32_t i;
/* ddr_mcu can access all ddr-regions */
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_MST(1), 0x0000ffff);
/* dcf/crypto_s can access all ddr-regions */
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_MST(14), 0x00000000);
/* dsu_mp_sec can access all ddr-regions.
* DSU access memory [f000_0000~ff00_0000] through MP in firewall_ddr.
*/
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_MST(36), 0xffff0000);
/* all other ns-master can't access all ddr-regions */
for (i = 0; i < FIREWALL_DDR_MST_CNT; i++) {
if (i == 1 || i == 14 || i == 36)
continue;
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_MST(i), 0xffffffff);
}
/* mcu_pmu can access all sram-regions */
mmio_write_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_MST(19), 0x000000ff);
/* dsu mp-sec can access all sram-regions */
mmio_write_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_MST(38), 0x000000ff);
/* nsp_dsu2main_sec can access all sram-regions */
mmio_write_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_MST(41), 0x00000000);
/* all ns-master can't access all sram-regions */
for (i = 0; i < FIREWALL_SYSMEM_MST_CNT; i++) {
if (i == 19 || i == 38 || i == 41)
continue;
mmio_write_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_MST(i),
0x00ff00ff);
}
/* dsu-ns can't access all ddr-regions, dsu-s can access all ddr-regions */
mmio_write_32(FIREWALL_DSU_BASE + FIREWALL_DSU_MST(0), 0xffffffff);
mmio_write_32(FIREWALL_DSU_BASE + FIREWALL_DSU_MST(1), 0x00000000);
dsb();
isb();
}
/* unit: Mb */
static void dsu_fw_rgn_config(uint64_t base_mb, uint64_t top_mb, int rgn_id)
{
int i;
if (rgn_id >= FIREWALL_DSU_RGN_CNT || rgn_id < 0) {
ERROR("%s regions-id:%d is invalid!\n", __func__, rgn_id);
panic();
}
mmio_write_32(FIREWALL_DSU_BASE + FIREWALL_DSU_RGN(rgn_id),
RG_MAP_SECURE(top_mb, base_mb));
for (i = 0; i < DDR_CHN_CNT; i++)
mmio_setbits_32(FIREWALL_DSU_BASE + FIREWALL_DSU_CON(i),
BIT(rgn_id));
}
/* unit: Mb */
static void ddr_fw_rgn_config(uint64_t base_mb, uint64_t top_mb, int rgn_id)
{
if (rgn_id >= FIREWALL_DDR_RGN_CNT || rgn_id < 0) {
ERROR("%s regions-id:%d is invalid!\n", __func__, rgn_id);
panic();
}
mmio_write_32(FIREWALL_DDR_BASE + FIREWALL_DDR_RGN(rgn_id),
RG_MAP_SECURE(top_mb, base_mb));
/* enable region */
mmio_setbits_32(FIREWALL_DDR_BASE + FIREWALL_DDR_CON,
BIT(rgn_id));
}
/* Unit: Kb */
static void sram_fw_rgn_config(uint64_t base_kb, uint64_t top_kb, int rgn_id)
{
if (rgn_id >= FIREWALL_SYSMEM_RGN_CNT || rgn_id < 0) {
ERROR("%s regions-id:%d is invalid!\n", __func__, rgn_id);
panic();
}
mmio_write_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_RGN(rgn_id),
RG_MAP_SRAM_SECURE(top_kb, base_kb));
/* enable region */
mmio_setbits_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_CON, BIT(rgn_id));
}
static void secure_region_init(void)
{
uint32_t i;
/* disable all region first except region0 */
mmio_clrbits_32(FIREWALL_DDR_BASE + FIREWALL_DDR_CON, 0xfffe);
for (i = 0; i < FIREWALL_DSU_CON_CNT; i++)
mmio_clrbits_32(FIREWALL_DSU_BASE + FIREWALL_DSU_CON(i), 0xfffe);
mmio_clrbits_32(FIREWALL_SYSMEM_BASE + FIREWALL_SYSMEM_CON, 0xfe);
secure_fw_master_init();
/* Use FW_DDR_RGN0_REG to config 0~1M space to secure */
dsu_fw_rgn_config(0, 1, 0);
ddr_fw_rgn_config(0, 1, 0);
/* Use FIREWALL_SYSMEM_RGN0 to config SRAM_ENTRY code(0~4k of sram) to secure */
sram_fw_rgn_config(0, 4, 0);
/* For 0xffff0000~0xffffffff, use FIREWALL_SYSMEM_RGN7 to config
* 960~1024k of sram to secure.
*/
sram_fw_rgn_config(960, 1024, 7);
}
void secure_timer_init(void)
{
/* gpu's cntvalue comes from stimer1 channel_5 */
mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_CONTROL_REG,
TIMER_DIS);
mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_LOAD_COUNT0, 0xffffffff);
mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_LOAD_COUNT1, 0xffffffff);
/* auto reload & enable the timer */
mmio_write_32(STIMER1_CHN_BASE(5) + TIMER_CONTROL_REG,
TIMER_EN | TIMER_FMODE);
}
void sgrf_init(void)
{
uint32_t i;
secure_region_init();
/* config master ddr_mcu_prot|dcf_wr|dcf_rd as secure */
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(14), 0x001f0011);
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(15), 0xffffffff);
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(16), 0x03ff03ff);
/* config slave mailbox_mcu_ddr as secure */
mmio_write_32(BUSSGRF_BASE + SGRF_FIREWALL_CON(4), 0xffff2000);
/* config slave int256mux4_mcu_ddr|int256mux4_mcu_pmu as secure */
mmio_write_32(BUSSGRF_BASE + SGRF_FIREWALL_CON(5), 0xffff0060);
/* config slave ddrgrf*|dma2ddr|ddrphy*_cru|umctl* as secure */
mmio_write_32(BUSSGRF_BASE + SGRF_FIREWALL_CON(24), 0xffff0fbf);
/* config slave ddrphy*|ddr_stanby*|ddr_mcu_timer|ddr_mcu_wdt as secure */
mmio_write_32(BUSSGRF_BASE + SGRF_FIREWALL_CON(25), 0xffff03ff);
/* config all other slave as ns */
for (i = 0; i < SGRF_FIREWALL_CON_CNT; i++) {
if (i == 4 || i == 5 || i == 24 || i == 25)
continue;
mmio_write_32(BUSSGRF_BASE + SGRF_FIREWALL_CON(i), 0xffff0000);
}
/* config vad_hprot non-secure, pmu_mcu_hprot as secure */
mmio_write_32(PMU1SGRF_BASE + PMU1SGRF_SOC_CON(0), 0x00180010);
/* config pmu1, pmu0, pmu_sram as secure */
mmio_write_32(PMU1SGRF_BASE + PMU1SGRF_SOC_CON(1), 0xefbe6020);
/* config remap_pmu_mem, h_pmu_mem as secure */
mmio_write_32(PMU1SGRF_BASE + PMU1SGRF_SOC_CON(2), 0x01f900c0);
/* disable dp encryption */
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(13), 0x00180018);
/* select grf config for pcie ats */
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(17), 0x11111111);
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(18), 0x11111111);
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(19), 0x00110011);
}

54
plat/rockchip/rk3588/drivers/secure/secure.h

@ -0,0 +1,54 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef SECURE_H
#define SECURE_H
/* DSUSGRF */
#define DSU_SGRF_SOC_CON(i) ((i) * 4)
#define DSUSGRF_SOC_CON(i) ((i) * 4)
#define DSUSGRF_SOC_CON_CNT 13
#define DSUSGRF_DDR_HASH_CON(i) (0x240 + (i) * 4)
#define DSUSGRF_DDR_HASH_CON_CNT 8
/* PMUSGRF */
#define PMU1SGRF_SOC_CON(n) ((n) * 4)
/* SGRF */
#define SGRF_SOC_CON(i) ((i) * 4)
#define SGRF_FIREWALL_CON(i) (0x240 + (i) * 4)
#define SGRF_FIREWALL_CON_CNT 32
/* ddr firewall */
#define FIREWALL_DDR_RGN(i) ((i) * 0x4)
#define FIREWALL_DDR_RGN_CNT 16
#define FIREWALL_DDR_MST(i) (0x40 + (i) * 0x4)
#define FIREWALL_DDR_MST_CNT 42
#define FIREWALL_DDR_CON 0xf0
#define FIREWALL_SYSMEM_RGN(i) ((i) * 0x4)
#define FIREWALL_SYSMEM_RGN_CNT 8
#define FIREWALL_SYSMEM_MST(i) (0x40 + (i) * 0x4)
#define FIREWALL_SYSMEM_MST_CNT 43
#define FIREWALL_SYSMEM_CON 0xf0
#define FIREWALL_DSU_RGN(i) ((i) * 0x4)
#define FIREWALL_DSU_RGN_CNT 16
#define FIREWALL_DSU_MST(i) (0x40 + (i) * 0x4)
#define FIREWALL_DSU_MST_CNT 2
#define FIREWALL_DSU_CON(i) (0xf0 + (i) * 4)
#define FIREWALL_DSU_CON_CNT 4
#define PLAT_MAX_DDR_CAPACITY_MB 0x8000 /* for 32Gb */
#define RG_MAP_SECURE(top, base) \
(((((top) - 1) & 0x7fff) << 16) | ((base) & 0x7fff))
#define RG_MAP_SRAM_SECURE(top_kb, base_kb) \
(((((top_kb) / 4 - 1) & 0xff) << 16) | ((base_kb) / 4 & 0xff))
void secure_timer_init(void);
void sgrf_init(void);
#endif /* SECURE_H */

96
plat/rockchip/rk3588/drivers/soc/soc.c

@ -0,0 +1,96 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <common/debug.h>
#include <drivers/console.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_compat.h>
#include <platform.h>
#include <platform_def.h>
#include <pmu.h>
#include <plat_private.h>
#include <secure.h>
#include <soc.h>
#define RK3588_DEV_RNG0_BASE 0xf0000000
#define RK3588_DEV_RNG0_SIZE 0x0ffff000
const mmap_region_t plat_rk_mmap[] = {
MAP_REGION_FLAT(RK3588_DEV_RNG0_BASE, RK3588_DEV_RNG0_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(DDR_SHARE_MEM, DDR_SHARE_SIZE,
MT_DEVICE | MT_RW | MT_NS),
{ 0 }
};
/* The RockChip power domain tree descriptor */
const unsigned char rockchip_power_domain_tree_desc[] = {
/* No of root nodes */
PLATFORM_SYSTEM_COUNT,
/* No of children for the root node */
PLATFORM_CLUSTER_COUNT,
/* No of children for the first cluster node */
PLATFORM_CLUSTER0_CORE_COUNT,
/* No of children for the second cluster node */
PLATFORM_CLUSTER1_CORE_COUNT
};
void timer_hp_init(void)
{
if ((mmio_read_32(TIMER_HP_BASE + TIMER_HP_CTRL) & 0x1) != 0)
return;
mmio_write_32(TIMER_HP_BASE + TIMER_HP_CTRL, 0x0);
dsb();
mmio_write_32(TIMER_HP_BASE + TIMER_HP_LOAD_COUNT0, 0xffffffff);
mmio_write_32(TIMER_HP_BASE + TIMER_HP_LOAD_COUNT1, 0xffffffff);
mmio_write_32(TIMER_HP_BASE + TIMER_HP_INT_EN, 0);
dsb();
mmio_write_32(TIMER_HP_BASE + TIMER_HP_CTRL, 0x1);
}
static void system_reset_init(void)
{
/* enable wdt_ns0~4 trigger global reset and select first reset.
* enable tsadc trigger global reset and select first reset.
* enable global reset and wdt trigger pmu reset.
* select first reset trigger pmu reset.s
*/
mmio_write_32(CRU_BASE + CRU_GLB_RST_CON, 0xffdf);
/* enable wdt_s, wdt_ns reset */
mmio_write_32(BUSSGRF_BASE + SGRF_SOC_CON(2), 0x0c000c00);
/* reset width = 0xffff */
mmio_write_32(PMU1GRF_BASE + PMU1GRF_SOC_CON(1), 0xffffffff);
/* enable first/tsadc/wdt reset output */
mmio_write_32(PMU1SGRF_BASE + PMU1SGRF_SOC_CON(0), 0x00070007);
/* pmu1_grf pmu1_ioc hold */
mmio_write_32(PMU1GRF_BASE + PMU1GRF_SOC_CON(7), 0x30003000);
/* pmu1sgrf hold */
mmio_write_32(PMU1SGRF_BASE + PMU1SGRF_SOC_CON(14), 0x00200020);
/* select tsadc_shut_m0 ionmux*/
mmio_write_32(PMU0IOC_BASE + 0x0, 0x00f00020);
}
void plat_rockchip_soc_init(void)
{
secure_timer_init();
timer_hp_init();
system_reset_init();
sgrf_init();
}

198
plat/rockchip/rk3588/drivers/soc/soc.h

@ -0,0 +1,198 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __SOC_H__
#define __SOC_H__
enum pll_id {
APLL_ID,
DPLL_ID,
GPLL_ID,
CPLL_ID,
NPLL_ID,
VPLL_ID,
};
enum pmu_pll_id {
PPLL_ID = 0,
HPLL_ID
};
enum cru_mode_con00 {
CLK_APLL,
CLK_DPLL,
CLK_CPLL,
CLK_GPLL,
CLK_REVSERVED,
CLK_NPLL,
CLK_VPLL,
CLK_USBPLL,
};
#define KHz 1000
#define MHz (1000 * KHz)
#define OSC_HZ (24 * MHz)
/* CRU */
#define GLB_SRST_FST_CFG_VAL 0xfdb9
#define CRU_PLLS_CON(pll_id, i) (0x160 + (pll_id) * 0x20 + (i) * 0x4)
#define CRU_PLL_CON(i) ((i) * 0x4)
#define CRU_MODE_CON0 0x280
#define CRU_CLKSEL_CON(i) ((i) * 0x4 + 0x300)
#define CRU_CLKGATE_CON(i) ((i) * 0x4 + 0x800)
#define CRU_CLKGATE_CON_CNT 78
#define CRU_SOFTRST_CON(i) ((i) * 0x4 + 0xa00)
#define CRU_GLB_CNT_TH 0xc00
#define CRU_GLB_SRST_FST 0xc08
#define CRU_GLB_SRST_SND 0xc0c
#define CRU_GLB_RST_CON 0xc10
#define CRU_GLB_RST_ST 0xc04
#define CRU_SDIO_CON0 0xc24
#define CRU_SDIO_CON1 0xc28
#define CRU_SDMMC_CON0 0xc30
#define CRU_SDMMC_CON1 0xc34
#define CRU_AUTOCS_CON0(id) (0xd00 + (id) * 8)
#define CRU_AUTOCS_CON1(id) (0xd04 + (id) * 8)
#define CRU_AUTOCS_ID_CNT 74
#define CRU_PLLCON0_M_MASK 0x3ff
#define CRU_PLLCON0_M_SHIFT 0
#define CRU_PLLCON1_P_MASK 0x3f
#define CRU_PLLCON1_P_SHIFT 0
#define CRU_PLLCON1_S_MASK 0x7
#define CRU_PLLCON1_S_SHIFT 6
#define CRU_PLLCON2_K_MASK 0xffff
#define CRU_PLLCON2_K_SHIFT 0
#define CRU_PLLCON1_PWRDOWN BIT(13)
#define CRU_PLLCON6_LOCK_STATUS BIT(15)
#define CRU_BIGCPU02_RST_MSK 0x30
#define CRU_BIGCPU13_RST_MSK 0x300
#define PHPCRU_CLKGATE_CON 0x800
#define PHPCRU_CLKGATE_CON_CNT 1
#define SECURECRU_CLKGATE_CON(i) ((i) * 0x4 + 0x800)
#define SECURECRU_CLKGATE_CON_CNT 4
#define PMU1CRU_CLKGATE_CON_CNT 6
/* CENTER GRF */
#define CENTER_GRF_CON(i) ((i) * 4)
/* PMU1GRF */
#define PMU1GRF_SOC_CON(n) ((n) * 4)
#define PMU1GRF_SOC_ST 0x60
#define PMU1GRF_OS_REG(n) (0x200 + ((n) * 4))
#define PMU_MCU_HALT BIT(7)
#define PMU_MCU_SLEEP BIT(9)
#define PMU_MCU_DEEPSLEEP BIT(10)
#define PMU_MCU_STOP_MSK \
(PMU_MCU_HALT | PMU_MCU_SLEEP | PMU_MCU_DEEPSLEEP)
/* SYSGRF */
#define SYS_GRF_NOC_CON(n) (0x100 + (n) * 4)
#define SYS_GRF_SOC_CON(n) (0x300 + (n) * 4)
#define SYS_GRF_SOC_STATUS(n) (0x380 + (n) * 4)
#define SYS_GRF_LITTLE_CPUS_WFE 0xf
#define SYS_GRF_CORE0_CPUS_WFE 0x30
#define SYS_GRF_CORE1_CPUS_WFE 0xc0
#define SYS_GRF_BIG_CPUS_WFE 0xf0
#define SYS_GRF_LITTLE_CPUS_WFI 0xf00
#define SYS_GRF_CORE0_CPUS_WFI 0x3000
#define SYS_GRF_CORE1_CPUS_WFI 0xc000
/* pvtm */
#define PVTM_CON(i) (0x4 + (i) * 4)
#define PVTM_INTEN 0x70
#define PVTM_INTSTS 0x74
#define PVTM_STATUS(i) (0x80 + (i) * 4)
#define PVTM_CALC_CNT 0x200
enum pvtm_con0 {
pvtm_start = 0,
pvtm_osc_en = 1,
pvtm_osc_sel = 2,
pvtm_rnd_seed_en = 5,
};
/* timer */
#define TIMER_LOAD_COUNT0 0x00
#define TIMER_LOAD_COUNT1 0x04
#define TIMER_CURRENT_VALUE0 0x08
#define TIMER_CURRENT_VALUE1 0x0c
#define TIMER_CONTROL_REG 0x10
#define TIMER_INTSTATUS 0x18
#define TIMER_DIS 0x0
#define TIMER_EN 0x1
#define TIMER_FMODE (0x0 << 1)
#define TIMER_RMODE (0x1 << 1)
#define STIMER0_CHN_BASE(n) (STIMER0_BASE + 0x20 * (n))
#define STIMER1_CHN_BASE(n) (STIMER1_BASE + 0x20 * (n))
/* cpu timer */
#define TIMER_HP_REVISION 0x0
#define TIMER_HP_CTRL 0x4
#define TIMER_HP_INT_EN 0x8
#define TIMER_HP_T24_GCD 0xc
#define TIMER_HP_T32_GCD 0x10
#define TIMER_HP_LOAD_COUNT0 0x14
#define TIMER_HP_LOAD_COUNT1 0x18
#define TIMER_HP_T24_DELAT_COUNT0 0x1c
#define TIMER_HP_T24_DELAT_COUNT1 0x20
#define TIMER_HP_CURR_32K_VALUE0 0x24
#define TIMER_HP_CURR_32K_VALUE1 0x28
#define TIMER_HP_CURR_TIMER_VALUE0 0x2c
#define TIMER_HP_CURR_TIMER_VALUE1 0x30
#define TIMER_HP_T24_32BEGIN0 0x34
#define TIMER_HP_T24_32BEGIN1 0x38
#define TIMER_HP_T32_24END0 0x3c
#define TIMER_HP_T32_24END1 0x40
#define TIMER_HP_BEGIN_END_VALID 0x44
#define TIMER_HP_SYNC_REQ 0x48
#define TIMER_HP_INTR_STATUS 0x4c
/* GPIO */
#define GPIO_SWPORT_DR_L 0x0000
#define GPIO_SWPORT_DR_H 0x0004
#define GPIO_SWPORT_DDR_L 0x0008
#define GPIO_SWPORT_DDR_H 0x000c
#define GPIO_INT_EN_L 0x0010
#define GPIO_INT_EN_H 0x0014
#define GPIO_INT_MASK_L 0x0018
#define GPIO_INT_MASK_H 0x001c
#define GPIO_INT_TYPE_L 0x0020
#define GPIO_INT_TYPE_H 0x0024
#define GPIO_INT_POLARITY_L 0x0028
#define GPIO_INT_POLARITY_H 0x002c
#define GPIO_INT_BOTHEDGE_L 0x0030
#define GPIO_INT_BOTHEDGE_H 0x0034
#define GPIO_DEBOUNCE_L 0x0038
#define GPIO_DEBOUNCE_H 0x003c
#define GPIO_DBCLK_DIV_EN_L 0x0040
#define GPIO_DBCLK_DIV_EN_H 0x0044
#define GPIO_DBCLK_DIV_CON 0x0048
#define GPIO_INT_STATUS 0x0050
#define GPIO_INT_RAWSTATUS 0x0058
#define GPIO_PORT_EOI_L 0x0060
#define GPIO_PORT_EOI_H 0x0064
#define GPIO_EXT_PORT 0x0070
#define GPIO_VER_ID 0x0078
/* DDRGRF */
#define DDRGRF_CHA_CON(i) ((i) * 4)
#define DDRGRF_CHB_CON(i) (0x30 + (i) * 4)
#define DDR_CHN_CNT 4
#endif /* __SOC_H__ */

42
plat/rockchip/rk3588/include/plat.ld.S

@ -0,0 +1,42 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef ROCKCHIP_PLAT_LD_S
#define ROCKCHIP_PLAT_LD_S
MEMORY {
PMUSRAM (rwx): ORIGIN = PMUSRAM_BASE, LENGTH = PMUSRAM_RSIZE
}
SECTIONS
{
. = PMUSRAM_BASE;
/*
* pmu_cpuson_entrypoint request address
* align 64K when resume, so put it in the
* start of pmusram
*/
.text_pmusram : {
ASSERT(. == ALIGN(64 * 1024),
".pmusram.entry request 64K aligned.");
KEEP(*(.pmusram.entry))
__bl31_pmusram_text_start = .;
*(.pmusram.text)
*(.pmusram.rodata)
. = ALIGN(PAGE_SIZE);
__bl31_pmusram_text_end = .;
__bl31_pmusram_data_start = .;
*(.pmusram.data)
. = ALIGN(PAGE_SIZE);
__bl31_pmusram_data_end = .;
ASSERT(__bl31_pmusram_data_end <= PMUSRAM_BASE + PMUSRAM_RSIZE,
".pmusram has exceeded its limit.");
} >PMUSRAM
}
#endif /* ROCKCHIP_PLAT_LD_S */

12
plat/rockchip/rk3588/include/plat_sip_calls.h

@ -0,0 +1,12 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PLAT_SIP_CALLS_H__
#define __PLAT_SIP_CALLS_H__
#define RK_PLAT_SIP_NUM_CALLS 0
#endif /* __PLAT_SIP_CALLS_H__ */

119
plat/rockchip/rk3588/include/platform_def.h

@ -0,0 +1,119 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PLATFORM_DEF_H__
#define __PLATFORM_DEF_H__
#include <arch.h>
#include <plat/common/common_def.h>
#include <rk3588_def.h>
#define DEBUG_XLAT_TABLE 0
/*******************************************************************************
* Platform binary types for linking
******************************************************************************/
#define PLATFORM_LINKER_FORMAT "elf64-littleaarch64"
#define PLATFORM_LINKER_ARCH aarch64
/*******************************************************************************
* Generic platform constants
******************************************************************************/
/* Size of cacheable stacks */
#if DEBUG_XLAT_TABLE
#define PLATFORM_STACK_SIZE 0x800
#elif IMAGE_BL1
#define PLATFORM_STACK_SIZE 0x440
#elif IMAGE_BL2
#define PLATFORM_STACK_SIZE 0x400
#elif IMAGE_BL31
#define PLATFORM_STACK_SIZE 0x800
#elif IMAGE_BL32
#define PLATFORM_STACK_SIZE 0x440
#endif
#define FIRMWARE_WELCOME_STR "Booting Trusted Firmware\n"
#define PLATFORM_SYSTEM_COUNT 1
#define PLATFORM_CLUSTER_COUNT 1
#define PLATFORM_CLUSTER0_CORE_COUNT 8
#define PLATFORM_CLUSTER1_CORE_COUNT 0
#define PLATFORM_CORE_COUNT (PLATFORM_CLUSTER1_CORE_COUNT + \
PLATFORM_CLUSTER0_CORE_COUNT)
#define PLATFORM_NUM_AFFS (PLATFORM_SYSTEM_COUNT + \
PLATFORM_CLUSTER_COUNT + \
PLATFORM_CORE_COUNT)
#define PLAT_MAX_PWR_LVL MPIDR_AFFLVL2
#define PLAT_RK_CLST_TO_CPUID_SHIFT 8
/*
* This macro defines the deepest retention state possible. A higher state
* id will represent an invalid or a power down state.
*/
#define PLAT_MAX_RET_STATE 1
/*
* This macro defines the deepest power down states possible. Any state ID
* higher than this is invalid.
*/
#define PLAT_MAX_OFF_STATE 2
/*******************************************************************************
* Platform memory map related constants
******************************************************************************/
/* TF txet, ro, rw, Size: 512KB */
#define TZRAM_BASE (0x0)
#define TZRAM_SIZE (0x100000)
/*******************************************************************************
* BL31 specific defines.
******************************************************************************/
/*
* Put BL3-1 at the top of the Trusted RAM
*/
#define BL31_BASE (TZRAM_BASE + 0x40000)
#define BL31_LIMIT (TZRAM_BASE + TZRAM_SIZE)
/*******************************************************************************
* Platform specific page table and MMU setup constants
******************************************************************************/
#define PLAT_PHY_ADDR_SPACE_SIZE (1ULL << 32)
#define PLAT_VIRT_ADDR_SPACE_SIZE (1ULL << 32)
#define ADDR_SPACE_SIZE (1ULL << 32)
#define MAX_XLAT_TABLES 18
#define MAX_MMAP_REGIONS 27
/*******************************************************************************
* Declarations and constants to access the mailboxes safely. Each mailbox is
* aligned on the biggest cache line size in the platform. This is known only
* to the platform as it might have a combination of integrated and external
* caches. Such alignment ensures that two maiboxes do not sit on the same cache
* line at any cache level. They could belong to different cpus/clusters &
* get written while being protected by different locks causing corruption of
* a valid mailbox address.
******************************************************************************/
#define CACHE_WRITEBACK_SHIFT 6
#define CACHE_WRITEBACK_GRANULE (1 << CACHE_WRITEBACK_SHIFT)
/*
* Define GICD and GICC and GICR base
*/
#define PLAT_RK_GICD_BASE PLAT_GICD_BASE
#define PLAT_RK_GICC_BASE PLAT_GICC_BASE
#define PLAT_RK_GICR_BASE PLAT_GICR_BASE
#define PLAT_RK_UART_BASE RK_DBG_UART_BASE
#define PLAT_RK_UART_CLOCK RK_DBG_UART_CLOCK
#define PLAT_RK_UART_BAUDRATE RK_DBG_UART_BAUDRATE
#define PLAT_RK_PRIMARY_CPU 0x0
#endif /* __PLATFORM_DEF_H__ */

27
plat/rockchip/rk3588/plat_sip_calls.c

@ -0,0 +1,27 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <plat_sip_calls.h>
#include <rockchip_sip_svc.h>
uintptr_t rockchip_plat_sip_handler(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
switch (smc_fid) {
default:
ERROR("%s: unhandled SMC (0x%x)\n", __func__, smc_fid);
SMC_RET1(handle, SMC_UNK);
}
}

85
plat/rockchip/rk3588/platform.mk

@ -0,0 +1,85 @@
#
# Copyright (c) 2024, Rockchip, Inc. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
RK_PLAT := plat/rockchip
RK_PLAT_SOC := ${RK_PLAT}/${PLAT}
RK_PLAT_COMMON := ${RK_PLAT}/common
DISABLE_BIN_GENERATION := 1
include lib/libfdt/libfdt.mk
include lib/xlat_tables_v2/xlat_tables.mk
# GIC-600 configuration
GICV3_IMPL := GIC600
GICV3_SUPPORT_GIC600 := 1
# Include GICv3 driver files
include drivers/arm/gic/v3/gicv3.mk
PLAT_INCLUDES := -Iinclude/plat/common \
-Idrivers/arm/gic/v3/ \
-I${RK_PLAT_COMMON}/ \
-I${RK_PLAT_COMMON}/drivers/pmu/ \
-I${RK_PLAT_COMMON}/drivers/parameter/ \
-I${RK_PLAT_COMMON}/include/ \
-I${RK_PLAT_COMMON}/pmusram/ \
-I${RK_PLAT_SOC}/ \
-I${RK_PLAT_SOC}/drivers/pmu/ \
-I${RK_PLAT_SOC}/drivers/secure/ \
-I${RK_PLAT_SOC}/drivers/soc/ \
-I${RK_PLAT_SOC}/include/
RK_GIC_SOURCES := ${GICV3_SOURCES} \
plat/common/plat_gicv3.c \
${RK_PLAT}/common/rockchip_gicv3.c
PLAT_BL_COMMON_SOURCES := ${XLAT_TABLES_LIB_SRCS} \
common/desc_image_load.c \
plat/common/aarch64/crash_console_helpers.S \
lib/bl_aux_params/bl_aux_params.c \
plat/common/plat_psci_common.c
ifneq (${ENABLE_STACK_PROTECTOR},0)
PLAT_BL_COMMON_SOURCES += ${RK_PLAT_COMMON}/rockchip_stack_protector.c
endif
BL31_SOURCES += ${RK_GIC_SOURCES} \
drivers/ti/uart/aarch64/16550_console.S \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
lib/cpus/aarch64/cortex_a55.S \
lib/cpus/aarch64/cortex_a76.S \
${RK_PLAT_COMMON}/aarch64/plat_helpers.S \
${RK_PLAT_COMMON}/aarch64/platform_common.c \
${RK_PLAT_COMMON}/bl31_plat_setup.c \
${RK_PLAT_COMMON}/plat_pm.c \
${RK_PLAT_COMMON}/plat_pm_helpers.c \
${RK_PLAT_COMMON}/plat_topology.c \
${RK_PLAT_COMMON}/params_setup.c \
${RK_PLAT_COMMON}/pmusram/cpus_on_fixed_addr.S \
${RK_PLAT_COMMON}/rockchip_sip_svc.c \
${RK_PLAT_SOC}/plat_sip_calls.c \
${RK_PLAT_SOC}/drivers/secure/secure.c \
${RK_PLAT_SOC}/drivers/soc/soc.c \
${RK_PLAT_SOC}/drivers/pmu/pmu.c \
${RK_PLAT_SOC}/drivers/pmu/pm_pd_regs.c
CTX_INCLUDE_AARCH32_REGS := 0
ENABLE_PLAT_COMPAT := 0
MULTI_CONSOLE_API := 1
ERRATA_A55_1530923 := 1
# System coherency is managed in hardware
HW_ASSISTED_COHERENCY := 1
# When building for systems with hardware-assisted coherency, there's no need to
# use USE_COHERENT_MEM. Require that USE_COHERENT_MEM must be set to 0 too.
USE_COHERENT_MEM := 0
ENABLE_SPE_FOR_LOWER_ELS := 0
$(eval $(call add_define,PLAT_EXTRA_LD_SCRIPT))
$(eval $(call add_define,PLAT_SKIP_DFS_TLB_DCACHE_MAINTENANCE))

221
plat/rockchip/rk3588/rk3588_def.h

@ -0,0 +1,221 @@
/*
* Copyright (c) 2024, Rockchip, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __PLAT_DEF_H__
#define __PLAT_DEF_H__
#define SIZE_K(n) ((n) * 1024)
#define WITH_16BITS_WMSK(bits) (0xffff0000 | (bits))
/* Special value used to verify platform parameters from BL2 to BL3-1 */
#define RK_BL31_PLAT_PARAM_VAL 0x0f1e2d3c4b5a6978ULL
#define UMCTL0_BASE 0xf7000000
#define UMCTL1_BASE 0xf8000000
#define UMCTL2_BASE 0xf9000000
#define UMCTL3_BASE 0xfa000000
#define GIC600_BASE 0xfe600000
#define GIC600_SIZE SIZE_K(64)
#define DAPLITE_BASE 0xfd100000
#define PMU0SGRF_BASE 0xfd580000
#define PMU1SGRF_BASE 0xfd582000
#define BUSSGRF_BASE 0xfd586000
#define DSUSGRF_BASE 0xfd587000
#define PMU0GRF_BASE 0xfd588000
#define PMU1GRF_BASE 0xfd58a000
#define SYSGRF_BASE 0xfd58c000
#define BIGCORE0GRF_BASE 0xfd590000
#define BIGCORE1GRF_BASE 0xfd592000
#define LITCOREGRF_BASE 0xfd594000
#define DSUGRF_BASE 0xfd598000
#define DDR01GRF_BASE 0xfd59c000
#define DDR23GRF_BASE 0xfd59d000
#define CENTERGRF_BASE 0xfd59e000
#define GPUGRF_BASE 0xfd5a0000
#define NPUGRF_BASE 0xfd5a2000
#define USBGRF_BASE 0xfd5ac000
#define PHPGRF_BASE 0xfd5b0000
#define PCIE3PHYGRF_BASE 0xfd5b8000
#define USB2PHY0_GRF_BASE 0xfd5d0000
#define USB2PHY1_GRF_BASE 0xfd5d4000
#define USB2PHY2_GRF_BASE 0xfd5d8000
#define USB2PHY3_GRF_BASE 0xfd5dc000
#define PMU0IOC_BASE 0xfd5f0000
#define PMU1IOC_BASE 0xfd5f4000
#define BUSIOC_BASE 0xfd5f8000
#define VCCIO1_4_IOC_BASE 0xfd5f9000
#define VCCIO3_5_IOC_BASE 0xfd5fa000
#define VCCIO2_IOC_BASE 0xfd5fb000
#define VCCIO6_IOC_BASE 0xfd5fc000
#define SRAM_BASE 0xff000000
#define PMUSRAM_BASE 0xff100000
#define PMUSRAM_SIZE SIZE_K(128)
#define PMUSRAM_RSIZE SIZE_K(64)
#define CRU_BASE 0xfd7c0000
#define PHP_CRU_BASE 0xfd7c8000
#define SCRU_BASE 0xfd7d0000
#define BUSSCRU_BASE 0xfd7d8000
#define PMU1SCRU_BASE 0xfd7e0000
#define PMU1CRU_BASE 0xfd7f0000
#define DDR0CRU_BASE 0xfd800000
#define DDR1CRU_BASE 0xfd804000
#define DDR2CRU_BASE 0xfd808000
#define DDR3CRU_BASE 0xfd80c000
#define BIGCORE0CRU_BASE 0xfd810000
#define BIGCORE1CRU_BASE 0xfd812000
#define LITCRU_BASE 0xfd814000
#define DSUCRU_BASE 0xfd818000
#define I2C0_BASE 0xfd880000
#define UART0_BASE 0xfd890000
#define GPIO0_BASE 0xfd8a0000
#define PWM0_BASE 0xfd8b0000
#define PMUPVTM_BASE 0xfd8c0000
#define TIMER_HP_BASE 0xfd8c8000
#define PMU0_BASE 0xfd8d0000
#define PMU1_BASE 0xfd8d4000
#define PMU2_BASE 0xfd8d8000
#define PMU_BASE PMU0_BASE
#define PMUWDT_BASE 0xfd8e0000
#define PMUTIMER_BASE 0xfd8f0000
#define OSC_CHK_BASE 0xfd9b0000
#define VOP_BASE 0xfdd90000
#define HDMIRX_BASE 0xfdee0000
#define MSCH0_BASE 0xfe000000
#define MSCH1_BASE 0xfe002000
#define MSCH2_BASE 0xfe004000
#define MSCH3_BASE 0xfe006000
#define FIREWALL_DSU_BASE 0xfe010000
#define FIREWALL_DDR_BASE 0xfe030000
#define FIREWALL_SYSMEM_BASE 0xfe038000
#define DDRPHY0_BASE 0xfe0c0000
#define DDRPHY1_BASE 0xfe0d0000
#define DDRPHY2_BASE 0xfe0e0000
#define DDRPHY3_BASE 0xfe0f0000
#define TIMER_DDR_BASE 0xfe118000
#define KEYLADDER_BASE 0xfe380000
#define CRYPTO_S_BASE 0xfe390000
#define OTP_S_BASE 0xfe3a0000
#define DCF_BASE 0xfe3c0000
#define STIMER0_BASE 0xfe3d0000
#define WDT_S_BASE 0xfe3e0000
#define CRYPTO_S_BY_KEYLAD_BASE 0xfe420000
#define NSTIMER0_BASE 0xfeae0000
#define NSTIMER1_BASE 0xfeae8000
#define WDT_NS_BASE 0xfeaf0000
#define UART1_BASE 0xfeb40000
#define UART2_BASE 0xfeb50000
#define UART3_BASE 0xfeb60000
#define UART4_BASE 0xfeb70000
#define UART5_BASE 0xfeb80000
#define UART6_BASE 0xfeb90000
#define UART7_BASE 0xfeba0000
#define UART8_BASE 0xfebb0000
#define UART9_BASE 0xfebc0000
#define GPIO1_BASE 0xfec20000
#define GPIO2_BASE 0xfec30000
#define GPIO3_BASE 0xfec40000
#define GPIO4_BASE 0xfec50000
#define MAILBOX1_BASE 0xfec70000
#define OTP_NS_BASE 0xfecc0000
#define INTMUX0_DDR_BASE 0Xfecf8000
#define INTMUX1_DDR_BASE 0Xfecfc000
#define STIMER1_BASE 0xfed30000
/**************************************************************************
* sys sram allocation
**************************************************************************/
#define SRAM_ENTRY_BASE SRAM_BASE
#define SRAM_PMUM0_SHMEM_BASE (SRAM_ENTRY_BASE + SIZE_K(3))
#define SRAM_LD_BASE (SRAM_ENTRY_BASE + SIZE_K(4))
#define SRAM_LD_SIZE SIZE_K(64)
#define SRAM_LD_SP (SRAM_LD_BASE + SRAM_LD_SIZE -\
128)
/**************************************************************************
* share mem region allocation: 1M~2M
**************************************************************************/
#define DDR_SHARE_MEM SIZE_K(1024)
#define DDR_SHARE_SIZE SIZE_K(64)
#define SHARE_MEM_BASE DDR_SHARE_MEM
#define SHARE_MEM_PAGE_NUM 15
#define SHARE_MEM_SIZE SIZE_K(SHARE_MEM_PAGE_NUM * 4)
#define SCMI_SHARE_MEM_BASE (SHARE_MEM_BASE + SHARE_MEM_SIZE)
#define SCMI_SHARE_MEM_SIZE SIZE_K(4)
/**************************************************************************
* UART related constants
**************************************************************************/
#define RK_DBG_UART_BASE UART2_BASE
#define RK_DBG_UART_BAUDRATE 1500000
#define RK_DBG_UART_CLOCK 24000000
/******************************************************************************
* System counter frequency related constants
******************************************************************************/
#define SYS_COUNTER_FREQ_IN_TICKS 24000000
#define SYS_COUNTER_FREQ_IN_MHZ 24
/******************************************************************************
* GIC-600 & interrupt handling related constants
******************************************************************************/
/* Base rk_platform compatible GIC memory map */
#define PLAT_GICD_BASE GIC600_BASE
#define PLAT_GICC_BASE 0
#define PLAT_GICR_BASE (GIC600_BASE + 0x80000)
#define PLAT_GICITS0_BASE 0xfe640000
#define PLAT_GICITS1_BASE 0xfe660000
/******************************************************************************
* sgi, ppi
******************************************************************************/
#define RK_IRQ_SEC_SGI_0 8
#define RK_IRQ_SEC_SGI_1 9
#define RK_IRQ_SEC_SGI_2 10
#define RK_IRQ_SEC_SGI_3 11
#define RK_IRQ_SEC_SGI_4 12
#define RK_IRQ_SEC_SGI_5 13
#define RK_IRQ_SEC_SGI_6 14
#define RK_IRQ_SEC_SGI_7 15
#define RK_IRQ_SEC_PHY_TIMER 29
/*
* Define a list of Group 1 Secure and Group 0 interrupts as per GICv3
* terminology. On a GICv2 system or mode, the lists will be merged and treated
* as Group 0 interrupts.
*/
#define PLAT_RK_GICV3_G1S_IRQS \
INTR_PROP_DESC(RK_IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY, \
INTR_GROUP1S, GIC_INTR_CFG_LEVEL)
#define PLAT_RK_GICV3_G0_IRQS \
INTR_PROP_DESC(RK_IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY, \
INTR_GROUP0, GIC_INTR_CFG_LEVEL)
/******************************************************************************
* pm reg region memory
******************************************************************************/
#define ROCKCHIP_PM_REG_REGION_MEM_SIZE SIZE_K(4)
#endif /* __PLAT_DEF_H__ */
Loading…
Cancel
Save