|
|
@ -23,320 +23,229 @@ |
|
|
|
|
|
|
|
#include "spm_private.h" |
|
|
|
|
|
|
|
/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */ |
|
|
|
static spinlock_t mem_attr_smc_lock; |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Secure Partition context information. |
|
|
|
******************************************************************************/ |
|
|
|
static secure_partition_context_t sp_ctx; |
|
|
|
static sp_context_t sp_ctx; |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Replace the S-EL1 re-entry information with S-EL0 re-entry |
|
|
|
* information |
|
|
|
* Set state of a Secure Partition context. |
|
|
|
******************************************************************************/ |
|
|
|
static void spm_setup_next_eret_into_sel0(const cpu_context_t *secure_context) |
|
|
|
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state) |
|
|
|
{ |
|
|
|
assert(secure_context == cm_get_context(SECURE)); |
|
|
|
|
|
|
|
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1()); |
|
|
|
spin_lock(&(sp_ptr->state_lock)); |
|
|
|
sp_ptr->state = state; |
|
|
|
spin_unlock(&(sp_ptr->state_lock)); |
|
|
|
} |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* This function takes an SP context pointer and: |
|
|
|
* 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx. |
|
|
|
* 2. Saves the current C runtime state (callee-saved registers) on the stack |
|
|
|
* frame and saves a reference to this state. |
|
|
|
* 3. Calls el3_exit() so that the EL3 system and general purpose registers |
|
|
|
* from the sp_ctx->cpu_ctx are used to enter the secure partition image. |
|
|
|
* Wait until the state of a Secure Partition is the specified one and change it |
|
|
|
* to the desired state. |
|
|
|
******************************************************************************/ |
|
|
|
static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr) |
|
|
|
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to) |
|
|
|
{ |
|
|
|
uint64_t rc; |
|
|
|
int success = 0; |
|
|
|
|
|
|
|
assert(sp_ctx_ptr != NULL); |
|
|
|
assert(sp_ctx_ptr->c_rt_ctx == 0); |
|
|
|
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx); |
|
|
|
while (success == 0) { |
|
|
|
spin_lock(&(sp_ptr->state_lock)); |
|
|
|
|
|
|
|
/* Apply the Secure EL1 system register context and switch to it */ |
|
|
|
cm_el1_sysregs_context_restore(SECURE); |
|
|
|
cm_set_next_eret_context(SECURE); |
|
|
|
if (sp_ptr->state == from) { |
|
|
|
sp_ptr->state = to; |
|
|
|
|
|
|
|
VERBOSE("%s: We're about to enter the Secure partition...\n", __func__); |
|
|
|
|
|
|
|
rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx); |
|
|
|
#if ENABLE_ASSERTIONS |
|
|
|
sp_ctx_ptr->c_rt_ctx = 0; |
|
|
|
#endif |
|
|
|
success = 1; |
|
|
|
} |
|
|
|
|
|
|
|
return rc; |
|
|
|
spin_unlock(&(sp_ptr->state_lock)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* This function takes a Secure partition context pointer and: |
|
|
|
* 1. Saves the S-EL1 system register context to sp_ctx->cpu_ctx. |
|
|
|
* 2. Restores the current C runtime state (callee saved registers) from the |
|
|
|
* stack frame using the reference to this state saved in |
|
|
|
* spm_secure_partition_enter(). |
|
|
|
* 3. It does not need to save any general purpose or EL3 system register state |
|
|
|
* as the generic smc entry routine should have saved those. |
|
|
|
* Check if the state of a Secure Partition is the specified one and, if so, |
|
|
|
* change it to the desired state. Returns 0 on success, -1 on error. |
|
|
|
******************************************************************************/ |
|
|
|
static void __dead2 spm_synchronous_sp_exit( |
|
|
|
const secure_partition_context_t *sp_ctx_ptr, uint64_t ret) |
|
|
|
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to) |
|
|
|
{ |
|
|
|
assert(sp_ctx_ptr != NULL); |
|
|
|
/* Save the Secure EL1 system register context */ |
|
|
|
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx); |
|
|
|
cm_el1_sysregs_context_save(SECURE); |
|
|
|
int ret = -1; |
|
|
|
|
|
|
|
assert(sp_ctx_ptr->c_rt_ctx != 0U); |
|
|
|
spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret); |
|
|
|
spin_lock(&(sp_ptr->state_lock)); |
|
|
|
|
|
|
|
if (sp_ptr->state == from) { |
|
|
|
sp_ptr->state = to; |
|
|
|
|
|
|
|
ret = 0; |
|
|
|
} |
|
|
|
|
|
|
|
/* Should never reach here */ |
|
|
|
assert(0); |
|
|
|
spin_unlock(&(sp_ptr->state_lock)); |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* This function passes control to the Secure Partition image (BL32) for the |
|
|
|
* first time on the primary cpu after a cold boot. It assumes that a valid |
|
|
|
* secure context has already been created by spm_setup() which can be directly |
|
|
|
* used. This function performs a synchronous entry into the Secure partition. |
|
|
|
* The SP passes control back to this routine through a SMC. |
|
|
|
* This function takes an SP context pointer and prepares the CPU to enter. |
|
|
|
******************************************************************************/ |
|
|
|
static int32_t spm_init(void) |
|
|
|
static void spm_sp_prepare_enter(sp_context_t *sp_ctx) |
|
|
|
{ |
|
|
|
entry_point_info_t *secure_partition_ep_info; |
|
|
|
uint64_t rc; |
|
|
|
|
|
|
|
VERBOSE("%s entry\n", __func__); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Get information about the Secure Partition (BL32) image. Its |
|
|
|
* absence is a critical failure. |
|
|
|
*/ |
|
|
|
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
|
|
|
assert(secure_partition_ep_info != NULL); |
|
|
|
assert(sp_ctx != NULL); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise the common context and then overlay the S-EL0 specific |
|
|
|
* context on top of it. |
|
|
|
*/ |
|
|
|
cm_init_my_context(secure_partition_ep_info); |
|
|
|
secure_partition_setup(); |
|
|
|
/* Assign the context of the SP to this CPU */ |
|
|
|
cm_set_context(&(sp_ctx->cpu_ctx), SECURE); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Make all CPUs use the same secure context. |
|
|
|
*/ |
|
|
|
for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) { |
|
|
|
cm_set_context_by_index(i, &sp_ctx.cpu_ctx, SECURE); |
|
|
|
} |
|
|
|
/* Restore the context assigned above */ |
|
|
|
cm_el1_sysregs_context_restore(SECURE); |
|
|
|
cm_set_next_eret_context(SECURE); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Arrange for an entry into the secure partition. |
|
|
|
*/ |
|
|
|
sp_ctx.sp_init_in_progress = 1; |
|
|
|
rc = spm_synchronous_sp_entry(&sp_ctx); |
|
|
|
assert(rc == 0); |
|
|
|
sp_ctx.sp_init_in_progress = 0; |
|
|
|
VERBOSE("SP_MEMORY_ATTRIBUTES_SET_AARCH64 availability has been revoked\n"); |
|
|
|
/* Invalidate TLBs at EL1. */ |
|
|
|
tlbivmalle1(); |
|
|
|
dsbish(); |
|
|
|
} |
|
|
|
|
|
|
|
return rc; |
|
|
|
/*******************************************************************************
|
|
|
|
* Enter SP after preparing it with spm_sp_prepare_enter(). |
|
|
|
******************************************************************************/ |
|
|
|
static uint64_t spm_sp_enter(sp_context_t *sp_ctx) |
|
|
|
{ |
|
|
|
/* Enter Secure Partition */ |
|
|
|
return spm_secure_partition_enter(&sp_ctx->c_rt_ctx); |
|
|
|
} |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Given a secure partition entrypoint info pointer, entry point PC & pointer to |
|
|
|
* a context data structure, this function will initialize the SPM context and |
|
|
|
* entry point info for the secure partition. |
|
|
|
* Jump to each Secure Partition for the first time. |
|
|
|
******************************************************************************/ |
|
|
|
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info, |
|
|
|
uint64_t pc, |
|
|
|
secure_partition_context_t *sp_ctx_ptr) |
|
|
|
static int32_t spm_init(void) |
|
|
|
{ |
|
|
|
uint32_t ep_attr; |
|
|
|
uint64_t rc = 0; |
|
|
|
sp_context_t *ctx; |
|
|
|
|
|
|
|
INFO("Secure Partition init...\n"); |
|
|
|
|
|
|
|
ctx = &sp_ctx; |
|
|
|
|
|
|
|
assert(sp_ep_info != NULL); |
|
|
|
assert(pc != 0U); |
|
|
|
assert(sp_ctx_ptr != NULL); |
|
|
|
ctx->state = SP_STATE_RESET; |
|
|
|
|
|
|
|
cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE); |
|
|
|
spm_sp_prepare_enter(ctx); |
|
|
|
rc |= spm_sp_enter(ctx); |
|
|
|
assert(rc == 0); |
|
|
|
|
|
|
|
/* initialise an entrypoint to set up the CPU context */ |
|
|
|
ep_attr = SECURE | EP_ST_ENABLE; |
|
|
|
if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U) |
|
|
|
ep_attr |= EP_EE_BIG; |
|
|
|
SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr); |
|
|
|
ctx->state = SP_STATE_IDLE; |
|
|
|
|
|
|
|
sp_ep_info->pc = pc; |
|
|
|
/* The secure partition runs in S-EL0. */ |
|
|
|
sp_ep_info->spsr = SPSR_64(MODE_EL0, |
|
|
|
MODE_SP_EL0, |
|
|
|
DISABLE_ALL_EXCEPTIONS); |
|
|
|
INFO("Secure Partition initialized.\n"); |
|
|
|
|
|
|
|
zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args)); |
|
|
|
return rc; |
|
|
|
} |
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Secure Partition Manager setup. The SPM finds out the SP entrypoint if not |
|
|
|
* already known and initialises the context for entry into the SP for its |
|
|
|
* initialisation. |
|
|
|
* Initialize contexts of all Secure Partitions. |
|
|
|
******************************************************************************/ |
|
|
|
int32_t spm_setup(void) |
|
|
|
{ |
|
|
|
entry_point_info_t *secure_partition_ep_info; |
|
|
|
sp_context_t *ctx; |
|
|
|
|
|
|
|
VERBOSE("%s entry\n", __func__); |
|
|
|
/* Disable MMU at EL1 (initialized by BL2) */ |
|
|
|
disable_mmu_icache_el1(); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Get information about the Secure Partition (BL32) image. Its |
|
|
|
* absence is a critical failure. |
|
|
|
*/ |
|
|
|
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
|
|
|
if (secure_partition_ep_info == NULL) { |
|
|
|
WARN("No SPM provided by BL2 boot loader, Booting device" |
|
|
|
" without SPM initialization. SMCs destined for SPM" |
|
|
|
" will return SMC_UNK\n"); |
|
|
|
return 1; |
|
|
|
} |
|
|
|
/* Initialize context of the SP */ |
|
|
|
INFO("Secure Partition context setup start...\n"); |
|
|
|
|
|
|
|
/*
|
|
|
|
* If there's no valid entry point for SP, we return a non-zero value |
|
|
|
* signalling failure initializing the service. We bail out without |
|
|
|
* registering any handlers |
|
|
|
*/ |
|
|
|
if (secure_partition_ep_info->pc == 0U) { |
|
|
|
return 1; |
|
|
|
} |
|
|
|
ctx = &sp_ctx; |
|
|
|
|
|
|
|
spm_init_sp_ep_state(secure_partition_ep_info, |
|
|
|
secure_partition_ep_info->pc, |
|
|
|
&sp_ctx); |
|
|
|
/* Assign translation tables context. */ |
|
|
|
ctx->xlat_ctx_handle = spm_get_sp_xlat_context(); |
|
|
|
|
|
|
|
/*
|
|
|
|
* All SPM initialization done. Now register our init function with |
|
|
|
* BL31 for deferred invocation |
|
|
|
*/ |
|
|
|
spm_sp_setup(ctx); |
|
|
|
|
|
|
|
/* Register init function for deferred init. */ |
|
|
|
bl31_register_bl32_init(&spm_init); |
|
|
|
|
|
|
|
VERBOSE("%s exit\n", __func__); |
|
|
|
INFO("Secure Partition setup done.\n"); |
|
|
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
/*
|
|
|
|
* Attributes are encoded using a different format in the SMC interface than in |
|
|
|
* the Trusted Firmware, where the mmap_attr_t enum type is used. This function |
|
|
|
* converts an attributes value from the SMC format to the mmap_attr_t format by |
|
|
|
* setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER. |
|
|
|
* The other fields are left as 0 because they are ignored by the function |
|
|
|
* change_mem_attributes(). |
|
|
|
*/ |
|
|
|
static unsigned int smc_attr_to_mmap_attr(unsigned int attributes) |
|
|
|
/*******************************************************************************
|
|
|
|
* MM_COMMUNICATE handler |
|
|
|
******************************************************************************/ |
|
|
|
static uint64_t mm_communicate(uint32_t smc_fid, uint64_t mm_cookie, |
|
|
|
uint64_t comm_buffer_address, |
|
|
|
uint64_t comm_size_address, void *handle) |
|
|
|
{ |
|
|
|
unsigned int tf_attr = 0U; |
|
|
|
sp_context_t *ctx = &sp_ctx; |
|
|
|
|
|
|
|
unsigned int access = (attributes & SP_MEMORY_ATTRIBUTES_ACCESS_MASK) |
|
|
|
>> SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT; |
|
|
|
|
|
|
|
if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RW) { |
|
|
|
tf_attr |= MT_RW | MT_USER; |
|
|
|
} else if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RO) { |
|
|
|
tf_attr |= MT_RO | MT_USER; |
|
|
|
} else { |
|
|
|
/* Other values are reserved. */ |
|
|
|
assert(access == SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS); |
|
|
|
/* The only requirement is that there's no access from EL0 */ |
|
|
|
tf_attr |= MT_RO | MT_PRIVILEGED; |
|
|
|
/* Cookie. Reserved for future use. It must be zero. */ |
|
|
|
if (mm_cookie != 0U) { |
|
|
|
ERROR("MM_COMMUNICATE: cookie is not zero\n"); |
|
|
|
SMC_RET1(handle, SPM_INVALID_PARAMETER); |
|
|
|
} |
|
|
|
|
|
|
|
if ((attributes & SP_MEMORY_ATTRIBUTES_NON_EXEC) == 0) { |
|
|
|
tf_attr |= MT_EXECUTE; |
|
|
|
} else { |
|
|
|
tf_attr |= MT_EXECUTE_NEVER; |
|
|
|
if (comm_buffer_address == 0U) { |
|
|
|
ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n"); |
|
|
|
SMC_RET1(handle, SPM_INVALID_PARAMETER); |
|
|
|
} |
|
|
|
|
|
|
|
return tf_attr; |
|
|
|
} |
|
|
|
|
|
|
|
/*
|
|
|
|
* This function converts attributes from the Trusted Firmware format into the |
|
|
|
* SMC interface format. |
|
|
|
*/ |
|
|
|
static unsigned int smc_mmap_to_smc_attr(unsigned int attr) |
|
|
|
{ |
|
|
|
unsigned int smc_attr = 0U; |
|
|
|
|
|
|
|
unsigned int data_access; |
|
|
|
|
|
|
|
if ((attr & MT_USER) == 0) { |
|
|
|
/* No access from EL0. */ |
|
|
|
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS; |
|
|
|
} else { |
|
|
|
if ((attr & MT_RW) != 0) { |
|
|
|
assert(MT_TYPE(attr) != MT_DEVICE); |
|
|
|
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RW; |
|
|
|
} else { |
|
|
|
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RO; |
|
|
|
} |
|
|
|
if (comm_size_address != 0U) { |
|
|
|
VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n"); |
|
|
|
} |
|
|
|
|
|
|
|
smc_attr |= (data_access & SP_MEMORY_ATTRIBUTES_ACCESS_MASK) |
|
|
|
<< SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT; |
|
|
|
/* Save the Normal world context */ |
|
|
|
cm_el1_sysregs_context_save(NON_SECURE); |
|
|
|
|
|
|
|
if ((attr & MT_EXECUTE_NEVER) != 0U) { |
|
|
|
smc_attr |= SP_MEMORY_ATTRIBUTES_NON_EXEC; |
|
|
|
} |
|
|
|
/* Wait until the Secure Partition is IDLE and set it to BUSY. */ |
|
|
|
sp_state_wait_switch(ctx, SP_STATE_IDLE, SP_STATE_BUSY); |
|
|
|
|
|
|
|
/* Jump to the Secure Partition. */ |
|
|
|
spm_sp_prepare_enter(ctx); |
|
|
|
|
|
|
|
return smc_attr; |
|
|
|
SMC_RET4(&(ctx->cpu_ctx), smc_fid, comm_buffer_address, |
|
|
|
comm_size_address, plat_my_core_pos()); |
|
|
|
} |
|
|
|
|
|
|
|
static int32_t spm_memory_attributes_get_smc_handler(uintptr_t base_va) |
|
|
|
/*******************************************************************************
|
|
|
|
* SP_EVENT_COMPLETE_AARCH64 handler |
|
|
|
******************************************************************************/ |
|
|
|
static uint64_t sp_event_complete(uint64_t x1) |
|
|
|
{ |
|
|
|
uint32_t attributes; |
|
|
|
|
|
|
|
spin_lock(&mem_attr_smc_lock); |
|
|
|
|
|
|
|
int rc = get_mem_attributes(secure_partition_xlat_ctx_handle, |
|
|
|
base_va, &attributes); |
|
|
|
sp_context_t *ctx = &sp_ctx; |
|
|
|
|
|
|
|
spin_unlock(&mem_attr_smc_lock); |
|
|
|
/* Save secure state */ |
|
|
|
cm_el1_sysregs_context_save(SECURE); |
|
|
|
|
|
|
|
/* Convert error codes of get_mem_attributes() into SPM ones. */ |
|
|
|
assert((rc == 0) || (rc == -EINVAL)); |
|
|
|
if (ctx->state == SP_STATE_RESET) { |
|
|
|
/*
|
|
|
|
* SPM reports completion. The SPM must have initiated the |
|
|
|
* original request through a synchronous entry into the secure |
|
|
|
* partition. Jump back to the original C runtime context. |
|
|
|
*/ |
|
|
|
spm_secure_partition_exit(ctx->c_rt_ctx, x1); |
|
|
|
|
|
|
|
if (rc == 0) { |
|
|
|
return (int32_t) smc_mmap_to_smc_attr(attributes); |
|
|
|
} else { |
|
|
|
return SPM_INVALID_PARAMETER; |
|
|
|
/* spm_secure_partition_exit doesn't return */ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static int spm_memory_attributes_set_smc_handler(u_register_t page_address, |
|
|
|
u_register_t pages_count, |
|
|
|
u_register_t smc_attributes) |
|
|
|
{ |
|
|
|
uintptr_t base_va = (uintptr_t) page_address; |
|
|
|
size_t size = (size_t) (pages_count * PAGE_SIZE); |
|
|
|
uint32_t attributes = (uint32_t) smc_attributes; |
|
|
|
/*
|
|
|
|
* This is the result from the Secure partition of an earlier request. |
|
|
|
* Copy the result into the non-secure context and return to the |
|
|
|
* non-secure state. |
|
|
|
*/ |
|
|
|
|
|
|
|
INFO(" Start address : 0x%lx\n", base_va); |
|
|
|
INFO(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size); |
|
|
|
INFO(" Attributes : 0x%x\n", attributes); |
|
|
|
/* Mark Secure Partition as idle */ |
|
|
|
assert(ctx->state == SP_STATE_BUSY); |
|
|
|
|
|
|
|
spin_lock(&mem_attr_smc_lock); |
|
|
|
sp_state_set(ctx, SP_STATE_IDLE); |
|
|
|
|
|
|
|
int ret = change_mem_attributes(secure_partition_xlat_ctx_handle, |
|
|
|
base_va, size, smc_attr_to_mmap_attr(attributes)); |
|
|
|
/* Get a reference to the non-secure context */ |
|
|
|
cpu_context_t *ns_cpu_context = cm_get_context(NON_SECURE); |
|
|
|
|
|
|
|
spin_unlock(&mem_attr_smc_lock); |
|
|
|
assert(ns_cpu_context != NULL); |
|
|
|
|
|
|
|
/* Convert error codes of change_mem_attributes() into SPM ones. */ |
|
|
|
assert((ret == 0) || (ret == -EINVAL)); |
|
|
|
/* Restore non-secure state */ |
|
|
|
cm_el1_sysregs_context_restore(NON_SECURE); |
|
|
|
cm_set_next_eret_context(NON_SECURE); |
|
|
|
|
|
|
|
return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER; |
|
|
|
/* Return to non-secure world */ |
|
|
|
SMC_RET1(ns_cpu_context, x1); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Secure Partition Manager SMC handler. |
|
|
|
******************************************************************************/ |
|
|
|
uint64_t spm_smc_handler(uint32_t smc_fid, |
|
|
|
uint64_t x1, |
|
|
|
uint64_t x2, |
|
|
@ -346,7 +255,6 @@ uint64_t spm_smc_handler(uint32_t smc_fid, |
|
|
|
void *handle, |
|
|
|
uint64_t flags) |
|
|
|
{ |
|
|
|
cpu_context_t *ns_cpu_context; |
|
|
|
unsigned int ns; |
|
|
|
|
|
|
|
/* Determine which security state this SMC originated from */ |
|
|
@ -356,66 +264,40 @@ uint64_t spm_smc_handler(uint32_t smc_fid, |
|
|
|
|
|
|
|
/* Handle SMCs from Secure world. */ |
|
|
|
|
|
|
|
assert(handle == cm_get_context(SECURE)); |
|
|
|
|
|
|
|
/* Make next ERET jump to S-EL0 instead of S-EL1. */ |
|
|
|
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1()); |
|
|
|
|
|
|
|
switch (smc_fid) { |
|
|
|
|
|
|
|
case SPM_VERSION_AARCH32: |
|
|
|
SMC_RET1(handle, SPM_VERSION_COMPILED); |
|
|
|
|
|
|
|
case SP_EVENT_COMPLETE_AARCH64: |
|
|
|
assert(handle == cm_get_context(SECURE)); |
|
|
|
cm_el1_sysregs_context_save(SECURE); |
|
|
|
spm_setup_next_eret_into_sel0(handle); |
|
|
|
|
|
|
|
if (sp_ctx.sp_init_in_progress) { |
|
|
|
/*
|
|
|
|
* SPM reports completion. The SPM must have |
|
|
|
* initiated the original request through a |
|
|
|
* synchronous entry into the secure |
|
|
|
* partition. Jump back to the original C |
|
|
|
* runtime context. |
|
|
|
*/ |
|
|
|
spm_synchronous_sp_exit(&sp_ctx, x1); |
|
|
|
assert(0); |
|
|
|
} |
|
|
|
|
|
|
|
/* Release the Secure Partition context */ |
|
|
|
spin_unlock(&sp_ctx.lock); |
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the result from the Secure partition of an |
|
|
|
* earlier request. Copy the result into the non-secure |
|
|
|
* context, save the secure state and return to the |
|
|
|
* non-secure state. |
|
|
|
*/ |
|
|
|
|
|
|
|
/* Get a reference to the non-secure context */ |
|
|
|
ns_cpu_context = cm_get_context(NON_SECURE); |
|
|
|
assert(ns_cpu_context != NULL); |
|
|
|
|
|
|
|
/* Restore non-secure state */ |
|
|
|
cm_el1_sysregs_context_restore(NON_SECURE); |
|
|
|
cm_set_next_eret_context(NON_SECURE); |
|
|
|
|
|
|
|
/* Return to normal world */ |
|
|
|
SMC_RET1(ns_cpu_context, x1); |
|
|
|
return sp_event_complete(x1); |
|
|
|
|
|
|
|
case SP_MEMORY_ATTRIBUTES_GET_AARCH64: |
|
|
|
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n"); |
|
|
|
|
|
|
|
if (!sp_ctx.sp_init_in_progress) { |
|
|
|
if (sp_ctx.state != SP_STATE_RESET) { |
|
|
|
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n"); |
|
|
|
SMC_RET1(handle, SPM_NOT_SUPPORTED); |
|
|
|
} |
|
|
|
SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1)); |
|
|
|
SMC_RET1(handle, |
|
|
|
spm_memory_attributes_get_smc_handler( |
|
|
|
&sp_ctx, x1)); |
|
|
|
|
|
|
|
case SP_MEMORY_ATTRIBUTES_SET_AARCH64: |
|
|
|
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n"); |
|
|
|
|
|
|
|
if (!sp_ctx.sp_init_in_progress) { |
|
|
|
if (sp_ctx.state != SP_STATE_RESET) { |
|
|
|
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n"); |
|
|
|
SMC_RET1(handle, SPM_NOT_SUPPORTED); |
|
|
|
} |
|
|
|
SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3)); |
|
|
|
SMC_RET1(handle, |
|
|
|
spm_memory_attributes_set_smc_handler( |
|
|
|
&sp_ctx, x1, x2, x3)); |
|
|
|
default: |
|
|
|
break; |
|
|
|
} |
|
|
@ -430,43 +312,7 @@ uint64_t spm_smc_handler(uint32_t smc_fid, |
|
|
|
|
|
|
|
case MM_COMMUNICATE_AARCH32: |
|
|
|
case MM_COMMUNICATE_AARCH64: |
|
|
|
{ |
|
|
|
uint64_t mm_cookie = x1; |
|
|
|
uint64_t comm_buffer_address = x2; |
|
|
|
uint64_t comm_size_address = x3; |
|
|
|
|
|
|
|
/* Cookie. Reserved for future use. It must be zero. */ |
|
|
|
if (mm_cookie != 0U) { |
|
|
|
ERROR("MM_COMMUNICATE: cookie is not zero\n"); |
|
|
|
SMC_RET1(handle, SPM_INVALID_PARAMETER); |
|
|
|
} |
|
|
|
|
|
|
|
if (comm_buffer_address == 0U) { |
|
|
|
ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n"); |
|
|
|
SMC_RET1(handle, SPM_INVALID_PARAMETER); |
|
|
|
} |
|
|
|
|
|
|
|
if (comm_size_address != 0U) { |
|
|
|
VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n"); |
|
|
|
} |
|
|
|
|
|
|
|
/* Save the Normal world context */ |
|
|
|
cm_el1_sysregs_context_save(NON_SECURE); |
|
|
|
|
|
|
|
/* Lock the Secure Partition context. */ |
|
|
|
spin_lock(&sp_ctx.lock); |
|
|
|
|
|
|
|
/*
|
|
|
|
* Restore the secure world context and prepare for |
|
|
|
* entry in S-EL0 |
|
|
|
*/ |
|
|
|
assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE)); |
|
|
|
cm_el1_sysregs_context_restore(SECURE); |
|
|
|
cm_set_next_eret_context(SECURE); |
|
|
|
|
|
|
|
SMC_RET4(&sp_ctx.cpu_ctx, smc_fid, comm_buffer_address, |
|
|
|
comm_size_address, plat_my_core_pos()); |
|
|
|
} |
|
|
|
return mm_communicate(smc_fid, x1, x2, x3, handle); |
|
|
|
|
|
|
|
case SP_MEMORY_ATTRIBUTES_GET_AARCH64: |
|
|
|
case SP_MEMORY_ATTRIBUTES_SET_AARCH64: |
|
|
|