Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
separate drivers instead of providing a single driver that can work on both
versions of the GIC architecture. These drivers correspond to the following
software use cases:
1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
e.g. GIC-400
2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features
3. A deprecated GICv3 driver that operates in legacy mode. This driver can
operate only in the GICv2 mode in the secure world. On a GICv3 system, this
driver allows normal world to run in either GICv3 mode (asymmetric mode)
or in the GICv2 mode. Both modes of operation are deprecated on GICv3
systems.
ARM platforms implement both versions of the GIC architecture. This patch adds a
layer of abstraction to help ARM platform ports chose the right GIC driver and
corresponding platform support. This is as described below:
1. A set of ARM common functions have been introduced to initialise the GIC and
the driver during cold and warm boot. These functions are prefixed as
"plat_arm_gic_". Weak definitions of these functions have been provided for
each type of driver.
2. Each platform includes the sources that implement the right functions
directly into the its makefile. The FVP can be instantiated with different
versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
to specify which of the three drivers should be included in the build.
3. A list of secure interrupts has to be provided to initialise each of the
three GIC drivers. For GIC v3.0 the interrupt ids have to be further
categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
types are merged and treated as Group 0 interrupts.
The two lists of interrupts are exported from the platform_def.h. The lists
are constructed by adding a list of board specific interrupt ids to a list of
ids common to all ARM platforms and Compute sub-systems.
This patch also makes some fields of `arm_config` data structure in FVP redundant
and these unused fields are removed.
Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
This patch adds platform helpers for the new GICv2 and GICv3 drivers in
plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate
file in their build according to the GIC driver to be used. The existing
plat_gic.c is only meant for the legacy GIC driver.
In the case of ARM platforms, the major changes are as follows:
1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU
interface register values has been modified to detect the type of CPU
interface being used (System register or memory mappped interface) before
using the right interface to print the registers.
2. The power management helper function that is called after a core is powered
up has been further refactored. This is to highlight that the per-cpu
distributor interface should be initialised only when the core was originally
powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API
was used.
3. In the case of CSS platforms, the system power domain restore helper
`arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish`
handler as the system power domain is always expected to be initialized when
the `on_finish` handler is invoked.
Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
On a GICv2 system, interrupts that should be handled in the secure world are
typically signalled as FIQs. On a GICv3 system, these interrupts are signalled
as IRQs instead. The mechanism for handling both types of interrupts is the same
in both cases. This patch enables the TSP to run on a GICv3 system by:
1. adding support for handling IRQs in the exception handling code.
2. removing use of "fiq" in the names of data structures, macros and functions.
The build option TSPD_ROUTE_IRQ_TO_EL3 is deprecated and is replaced with a
new build flag TSP_NS_INTR_ASYNC_PREEMPT. For compatibility reasons, if the
former build flag is defined, it will be used to define the value for the
new build flag. The documentation is also updated accordingly.
Change-Id: I1807d371f41c3656322dd259340a57649833065e
The TSP is expected to pass control back to EL3 if it gets preempted due to
an interrupt while handling a Standard SMC in the following scenarios:
1. An FIQ preempts Standard SMC execution and that FIQ is not a TSP Secure
timer interrupt or is preempted by a higher priority interrupt by the time
the TSP acknowledges it. In this case, the TSP issues an SMC with the ID
as `TSP_EL3_FIQ`. Currently this case is never expected to happen as only
the TSP Secure Timer is expected to generate FIQ.
2. An IRQ preempts Standard SMC execution and in this case the TSP issues
an SMC with the ID as `TSP_PREEMPTED`.
In both the cases, the TSPD hands control back to the normal world and returns
returns an error code to the normal world to indicate that the standard SMC it
had issued has been preempted but not completed.
This patch unifies the handling of these two cases in the TSPD and ensures that
the TSP only uses TSP_PREEMPTED instead of separate SMC IDs. Also instead of 2
separate error codes, SMC_PREEMPTED and TSP_EL3_FIQ, only SMC_PREEMPTED is
returned as error code back to the normal world.
Background information: On a GICv3 system, when the secure world has affinity
routing enabled, in 2. an FIQ will preempt TSP execution instead of an IRQ. The
FIQ could be a result of a Group 0 or a Group 1 NS interrupt. In both case, the
TSPD passes control back to the normal world upon receipt of the TSP_PREEMPTED
SMC. A Group 0 interrupt will immediately preempt execution to EL3 where it
will be handled. This allows for unified interrupt handling in TSP for both
GICv3 and GICv2 systems.
Change-Id: I9895344db74b188021e3f6a694701ad272fb40d4
This patch renames the GICv3 interrupt group macros from
INT_TYPE_G0, INT_TYPE_G1S and INT_TYPE_G1NS to INTR_GROUP0,
INTR_GROUP1S and INTR_GROUP1NS respectively.
Change-Id: I40c66f589ce6234fa42205adcd91f7d6ad8f33d4
This patch adds watchdog support on ARM platforms (FVP and Juno).
A secure instance of SP805 is used as Trusted Watchdog. It is
entirely managed in BL1, being enabled in the early platform setup
hook and disabled in the exit hook. By default, the watchdog is
enabled in every build (even when TBB is disabled).
A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
has been introduced to allow the user to disable the watchdog at
build time. This feature may be used for testing or debugging
purposes.
Specific error handlers for Juno and FVP are also provided in this
patch. These handlers will be called after an image load or
authentication error. On FVP, the Table of Contents (ToC) in the FIP
is erased. On Juno, the corresponding error code is stored in the
V2M Non-Volatile flags register. In both cases, the CPU spins until
a watchdog reset is generated after 256 seconds (as specified in
the TBBR document).
Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
This patch adds ARM specific OIDs which will be used to extract
the extension data from the certificates. These OIDs are arranged
as a subtree whose root node has been specifically allocated for
ARM Ltd.
{ iso(1) identified-organization(3) dod(6) internet(1)
private(4) enterprise(1) 4128 }
Change-Id: Ice20b3c8a31ddefe9102f3bd42f7429986f3ac34
The TZC-400 driver implementation incorrectly uses the component
ID registers to detect the TZC-400 peripheral. As all ARM
peripherals share the same component ID, it doesn't allow to
uniquely identify the TZC-400 peripheral. This patch fixes the
TZC-400 driver by relying on the `part_number_0` and
`part_number_1` fields in the `PID` registers instead.
The `tzc_read_component_id` function has been replaced by
`tzc_read_peripheral_id`, which reads the 'part_number' values
and compares them with the TZC-400 peripheral ID.
Also, it adds a debug assertion to detect when the TZC driver
initialisation function is called multiple times.
Change-Id: I35949f6501a51c0a794144cd1c3a6db62440dce6
Based on SP805 Programmer's model (ARM DDI 0270B). This driver
provides three public APIs:
void sp805_start(uintptr_t base, unsigned long ticks);
void sp805_stop(uintptr_t base);
void sp805_refresh(uintptr_t base, unsigned long ticks);
Upon start, the watchdog starts counting down from the number of
ticks specified. When the count reaches 0 an interrupt is triggered.
The watchdog restarts counting down from the number of ticks
specified. If the count reaches 0 again, the system is reset. A
mechanism to handle the interrupt has not been implemented. Instead,
the API to refresh the watchdog should be used instead to prevent a
system reset.
Change-Id: I799d53f8d1213b10b341a4a67fde6486e89a3dab
FVP and Juno platforms include a NOR flash memory to store and
load the FIP, the kernel or a ramdisk. This NOR flash is arranged
as 2 x 16 bit flash devices and can be programmed using CFI
standard commands.
This patch provides a basic API to write single 32 bit words of
data into the NOR flash. Functions to lock/unlock blocks against
erase or write operations are also provided.
Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.
Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.
The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.
The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.
The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.
This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.
Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
This patch deprecates the legacy ARM GIC driver and related header files
(arm_gic.h, gic_v2.h, gic_v3.h). For GICv2 systems, platform ports should
use the GICv2 driver in include/drivers/arm/gicv2.h and for GICv3 systems,
platform ports should use the GICv3 driver in include/drivers/arm/gicv3.h
NOTE: The ARM Legacy GIC drivers have been deprecated with this patch.
Platform ports are encouraged to migrate to the new GIC drivers.
Change-Id: Ic0460ef0427b54a6aac476279a7f29b81943e942
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike
the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver
is optimised for GICv2 and does not support GICv3 systems in GICv2
compatibility mode. The driver interface has been implemented in
`drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in
`include/drivers/arm/gicv2.h`. Helper functions are implemented in
`drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the
`drivers/arm/gic/v2/gicv2_private.h` header.
Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
This patch adds a driver for ARM GICv3 systems that need to run software
stacks where affinity routing is enabled across all privileged exception
levels for both security states. This driver is a partial implementation
of the ARM Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does
not cater for legacy support of interrupts and asymmetric configurations.
The existing GIC driver has been preserved unchanged. The common code for
GICv2 and GICv3 systems has been refactored into a new file,
`drivers/arm/gic/common/gic_common.c`. The corresponding header is in
`include/drivers/arm/gic_common.h`.
The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`.
The corresponding header is in `include/drivers/arm/gicv3.h`. Helper
functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c`
and are accessible through the `drivers/arm/gic/v3/gicv3_private.h`
header.
Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
This patch changes the build time behaviour when using deprecated API within
Trusted Firmware. Previously the use of deprecated APIs would only trigger a
build warning (which was always treated as a build error), when
WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
trigger a build time warning. Whether this warning is treated as error or not
is determined by the build flag ERROR_DEPRECATED which is disabled by default.
When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
inclusion of deprecated headers will result in a build error.
Also the deprecated context management helpers in context_mgmt.c are now
conditionally compiled depending on the value of ERROR_DEPRECATED flag
so that the APIs themselves do not result in a build error when the
ERROR_DEPRECATED flag is set.
NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
trigger a build error.
Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
The default reset values for the L2 Data & Tag RAM latencies on the
Cortex-A72 on Juno R2 are not suitable. This patch modifies
the Juno platform reset handler to configure the right settings
on Juno R2.
Change-Id: I20953de7ba0619324a389e0b7bbf951b64057db8
As per Section D7.2.81 in the ARMv8-A Reference Manual (DDI0487A Issue A.h),
bits[29:28], bits[23:22], bit[20] and bit[11] in the SCTLR_EL1 are RES1. This
patch adds the missing bit[20] to the SCTLR_EL1_RES1 macro.
Change-Id: I827982fa2856d04def6b22d8200a79fe6922a28e
Patch 7e26fe1f deprecates IO specific return definitions in favour
of standard errno codes. This patch removes those definitions
and its usage from the IO framework, IO drivers and IO platform
layer. Following this patch, standard errno codes must be used
when checking the return value of an IO function.
Change-Id: Id6e0e9d0a7daf15a81ec598cf74de83d5768650f
This patch introduces a new function called 'print_entry_point_info'
that prints an entry_point_t structure for debugging purposes.
As such, it can be used to display the entry point address, SPSR and
arguments passed from a firmware image to the next one.
This function is now called in the following images transitions:
- BL1 to BL2
- BL1 to BL31
- BL31 to the next image (typically BL32 or BL33)
The following changes have been introduced:
- Fix the output format of the SPSR value : SPSR is a 32-bit value,
not a 64-bit one.
- Print all arguments values.
The entry_point_info_t structure allows to pass up to 8 arguments.
In most cases, only the first 2 arguments were printed.
print_entry_point_info() now prints all of them as 'VERBOSE'
traces.
Change-Id: Ieb384bffaa7849e6cb95a01a47c0b7fc2308653a
This patch fixes a compilation issue for platforms that are aligned to ARM
Standard platforms and include the `plat_arm.h` header in their platform port.
The compilation would fail for such a platform because `xlat_tables.h` which
has the definition for `mmap_region_t` is not included in `plat_arm.h`. This
patch fixes this by including `xlat_tables.h` in `plat_arm.h` header.
FixesARM-Software/tf-issues#318
Change-Id: I75f990cfb4078b3996fc353c8cd37c9de61d555e
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.
According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.
A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.
Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
This patch implements the necessary topology changes for supporting
system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
specific. In addition, the `arm_power_domain_tree_desc[]` and
`arm_pm_idle_states[]` are modified to support the system power domain
at level 2. With this patch, even though the power management operations
involving the system power domain will not return any error, the platform
layer will silently ignore any operations to the power domain. The actual
power management support for the system power domain will be added later.
Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
This patch adds an optional API to the platform port:
void plat_error_handler(int err) __dead2;
The platform error handler is called when there is a specific error
condition after which Trusted Firmware cannot continue. While panic()
simply prints the crash report (if enabled) and spins, the platform
error handler can be used to hand control over to the platform port
so it can perform specific bookeeping or post-error actions (for
example, reset the system). This function must not return.
The parameter indicates the type of error using standard codes from
errno.h. Possible errors reported by the generic code are:
-EAUTH : a certificate or image could not be authenticated
(when Trusted Board Boot is enabled)
-ENOENT : the requested image or certificate could not be found
or an IO error was detected
-ENOMEM : resources exhausted. Trusted Firmware does not use
dynamic memory, so this error is usually an indication
of an incorrect array size
A default weak implementation of this function has been provided.
It simply implements an infinite loop.
Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
This patch replaces custom definitions used as return values for
the load_auth_image() function with standard error codes defined
in errno.h. The custom definitions have been removed.
It also replaces the usage of IO framework error custom definitions,
which have been deprecated. Standard errno definitions are used
instead.
Change-Id: I1228477346d3876151c05b470d9669c37fd231be
This patch redefines the values of IO_FAIL, IO_NOT_SUPPORTED and
IO_RESOURCES_EXHAUSTED to match the corresponding definitions in
errno.h:
#define IO_FAIL (-ENOENT)
#define IO_NOT_SUPPORTED (-ENODEV)
#define IO_RESOURCES_EXHAUSTED (-ENOMEM)
NOTE: please note that the IO_FAIL, IO_NOT_SUPPORTED and
IO_RESOURCES_EXHAUSTED definitions are considered deprecated
and their usage should be avoided. Callers should rely on errno.h
definitions when checking the return values of IO functions.
Change-Id: Ic8491aa43384b6ee44951ebfc053a3ded16a80be
This patch does the following reorganization to psci power management (PM)
handler setup for ARM standard platform ports :
1. The mailbox programming required during `plat_setup_psci_ops()` is identical
for all ARM platforms. Hence the implementation of this API is now moved
to the common `arm_pm.c` file. Each ARM platform now must define the
PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
as ARM_SHARED_RAM_BASE.
2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
exported via `plat_arm_psci_pm_ops`. This allows the common implementation
of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
In the case of CSS platforms, a default weak implementation of the same is
provided in `css_pm.c` which can be overridden by each CSS platform.
3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
made library functions and a new header file `css_pm.h` is added to export
these generic PM handlers. This allows the platform to reuse the
adequate CSS PM handlers and redefine others which need to be customized
when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.
Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
The CASSERT() macro introduces a typedef for the sole purpose of
triggering a compilation error if the condition to check is false.
This typedef is not used afterwards. As a consequence, when the
CASSERT() macro is called from withing a function block, the compiler
complains and outputs the following error message:
error: typedef 'msg' locally defined but not used [-Werror=unused-local-typedefs]
This patch adds the "unused" attribute for the aforementioned
typedef. This silences the compiler warning and thus makes the
CASSERT() macro callable from within function blocks as well.
Change-Id: Ie36b58fcddae01a21584c48bb6ef43ec85590479
This patch adds PM handlers to TLKD for the system suspend/resume and
system poweroff/reset cases. TLK expects all SMCs through a single
handler, which then fork out into multiple handlers depending on the
SMC. We tap into the same single entrypoint by restoring the S-EL1
context before passing the PM event via register 'x0'. On completion
of the PM event, TLK sends a completion SMC and TLKD then moves on
with the PM process.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
The generic delay timer driver expects a pointer to a timer_ops_t
structure containing the specific timer driver information. It
doesn't make a copy of the structure, instead it just keeps the
pointer. Therefore, this pointer must remain valid over time.
The SP804 driver doesn't satisfy this requirement. The
sp804_timer_init() macro creates a temporary instanciation of the
timer_ops_t structure on the fly and passes it to the generic
delay timer. When this temporary instanciation gets deallocated,
the generic delay timer is left with a pointer to invalid data.
This patch fixes this bug by statically allocating the SP804
timer_ops_t structure.
Change-Id: I8fbf75907583aef06701e3fd9fabe0b2c9bc95bf
This patch adds a device driver which can be used to program the following
aspects of ARM CCN IP:
1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and
Request nodes.
2. Add and remove master interfaces from the snoop and dvm
domains.
3. Place the L3 cache in a given power state.
4. Configuring system adress map and enabling 3 SN striping mode of memory
controller operation.
Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
On the ARMv8 architecture, cache maintenance operations by set/way on the last
level of integrated cache do not affect the system cache. This means that such a
flush or clean operation could result in the data being pushed out to the system
cache rather than main memory. Another CPU could access this data before it
enables its data cache or MMU. Such accesses could be serviced from the main
memory instead of the system cache. If the data in the sysem cache has not yet
been flushed or evicted to main memory then there could be a loss of
coherency. The only mechanism to guarantee that the main memory will be updated
is to use cache maintenance operations to the PoC by MVA(See section D3.4.11
(System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G).
This patch removes the reliance of Trusted Firmware on the flush by set/way
operation to ensure visibility of data in the main memory. Cache maintenance
operations by MVA are now used instead. The following are the broad category of
changes:
1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is
initialised. This ensures that any stale cache lines at any level of cache
are removed.
2. Updates to global data in runtime firmware (BL31) by the primary CPU are made
visible to secondary CPUs using a cache clean operation by MVA.
3. Cache maintenance by set/way operations are only used prior to power down.
NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN
ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES.
FixesARM-software/tf-issues#205
Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
This patch updates ARM platform ports to use the new unified bakery locks
API. The caller does not have to use a different bakery lock API depending upon
the value of the USE_COHERENT_MEM build option.
NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS.
Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
This patch unifies the bakery lock api's across coherent and normal
memory implementation of locks by using same data type `bakery_lock_t`
and similar arguments to functions.
A separate section `bakery_lock` has been created and used to allocate
memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are
allocated in normal memory, each lock for a core has to spread
across multiple cache lines. By using the total size allocated in a
separate cache line for a single core at compile time, the memory for
other core locks is allocated at link time by multiplying the single
core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock
algorithm now uses lock address instead of the `id` in the per_cpu_data.
For locks allocated in coherent memory, it moves locks from
tzfw_coherent_memory to bakery_lock section.
The bakery locks are allocated as part of bss or in coherent memory
depending on usage of coherent memory. Both these regions are
initialised to zero as part of run_time_init before locks are used.
Hence, bakery_lock_init() is made an empty function as the lock memory
is already initialised to zero.
The above design lead to the removal of psci bakery locks from
non_cpu_power_pd_node to psci_locks.
NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED.
THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY
LOCKS IN NORMAL MEMORY.
Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
Currently, on ARM platforms(ex. Juno) non-secure access to specific
peripheral regions, config registers which are inside and outside CSS
is done in the soc_css_security_setup(). This patch separates the CSS
security setup from the SOC security setup in the css_security_setup().
The CSS security setup involves programming of the internal NIC to
provide access to regions inside the CSS. This is needed only in
Juno, hence Juno implements it in its board files as css_init_nic400().
Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
On Juno and FVP platforms, the Non-Secure System timer corresponds
to frame 1. However, this is a platform-specific decision and it
shouldn't be hard-coded. Hence, this patch introduces
PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
to specify the correct non-secure timer frame.
Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
support different TrustZone Controller base addresses across ARM platforms.
Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
In certain Trusted OS implementations it is a requirement to pass them the
highest power level which will enter a power down state during a PSCI
CPU_SUSPEND or SYSTEM_SUSPEND API invocation. This patch passes this power level
to the SPD in the "max_off_pwrlvl" parameter of the svc_suspend() hook.
Currently, the highest power level which was requested to be placed in a low
power state (retention or power down) is passed to the SPD svc_suspend_finish()
hook. This hook is called after emerging from the low power state. It is more
useful to pass the highest power level which was powered down instead. This
patch does this by changing the semantics of the parameter passed to an SPD's
svc_suspend_finish() hook. The name of the parameter has been changed from
"suspend_level" to "max_off_pwrlvl" as well. Same changes have been made to the
parameter passed to the tsp_cpu_resume_main() function.
NOTE: THIS PATCH CHANGES THE SEMANTICS OF THE EXISTING "svc_suspend_finish()"
API BETWEEN THE PSCI AND SPD/SP IMPLEMENTATIONS. THE LATTER MIGHT NEED
UPDATES TO ENSURE CORRECT BEHAVIOUR.
Change-Id: If3a9d39b13119bbb6281f508a91f78a2f46a8b90
BL2 loads secure runtime code(BL3-1, BL3-2) and hence it has to
run in secure world otherwise BL3-1/BL3-2 have to execute from
non-secure memory. Hence, This patch removes the change_security_state()
call in bl1_run_bl2() and replaces it with an assert to confirm
the BL2 as secure.
FixesARM-software/tf-issues#314
Change-Id: I611b83f5c4090e58a76a2e950b0d797b46df3c29
ARM TF configures all interrupts as non-secure except those which
are present in irq_sec_array. This patch updates the irq_sec_array
with the missing secure interrupts for ARM platforms.
It also updates the documentation to be inline with the latest
implementation.
FixesARM-software/tf-issues#312
Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
This patch adds macros suitable for programming the Advanced
SIMD/Floating-point (only Cortex-A53), CPU and L2 dynamic
retention control policy in the CPUECTLR_EL1 and L2ECTLR
registers.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
BL3-2 image (Secure Payload) is optional. If the image cannot be
loaded a warning message is printed and the boot process continues.
According to the TBBR document, this behaviour should not apply in
case of an authentication error, where the boot process should be
aborted.
This patch modifies the load_auth_image() function to distinguish
between a load error and an authentication error. The caller uses
the return value to abort the boot process or continue.
In case of authentication error, the memory region used to store
the image is wiped clean.
Change-Id: I534391d526d514b2a85981c3dda00de67e0e7992
This patch reworks the PSCI generic implementation to conform to ARM
Trusted Firmware coding guidelines as described here:
https://github.com/ARM-software/arm-trusted-firmware/wiki
This patch also reviews the use of signed data types within PSCI
Generic code and replaces them with their unsigned counterparts wherever
they are not appropriate. The PSCI_INVALID_DATA macro which was defined
to -1 is now replaced with PSCI_INVALID_PWR_LVL macro which is defined
to PLAT_MAX_PWR_LVL + 1.
Change-Id: Iaea422d0e46fc314e0b173c2b4c16e0d56b2515a
This patch adds the necessary documentation updates to porting_guide.md
for the changes in the platform interface mandated as a result of the new
PSCI Topology and power state management frameworks. It also adds a
new document `platform-migration-guide.md` to aid the migration of existing
platform ports to the new API.
The patch fixes the implementation and callers of
plat_is_my_cpu_primary() to use w0 as the return parameter as implied by
the function signature rather than x0 which was used previously.
Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
This patch implements the platform power managment handler to verify
non secure entrypoint for ARM platforms. The handler ensures that the
entry point specified by the normal world during CPU_SUSPEND, CPU_ON
or SYSTEM_SUSPEND PSCI API is a valid address within the non secure
DRAM.
Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
As per PSCI1.0 specification, the error code to be returned when an invalid
non secure entrypoint address is specified by the PSCI client for CPU_SUSPEND,
CPU_ON or SYSTEM_SUSPEND must be PSCI_E_INVALID_ADDRESS. The current PSCI
implementation returned PSCI_E_INVAL_PARAMS. This patch rectifies this error
and also implements a common helper function to validate the entrypoint
information to be used across these PSCI API implementations.
Change-Id: I52d697d236c8bf0cd3297da4008c8e8c2399b170
Since there is a unique warm reset entry point, the FVP and Juno
port can use a single mailbox instead of maintaining one per core.
The mailbox gets programmed only once when plat_setup_psci_ops()
is invoked during PSCI initialization. This means mailbox is not
zeroed out during wakeup.
Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
This patch adds support to the Juno and FVP ports for composite power states
with both the original and extended state-id power-state formats. Both the
platform ports use the recommended state-id encoding as specified in
Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag
ARM_RECOM_STATE_ID_ENC is used to include this support.
By default, to maintain backwards compatibility, the original power state
parameter format is used and the state-id field is expected to be zero.
Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
This patch migrates ARM reference platforms, Juno and FVP, to the new platform
API mandated by the new PSCI power domain topology and composite power state
frameworks. The platform specific makefiles now exports the build flag
ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer.
Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
This patch migrates the rest of Trusted Firmware excluding Secure Payload and
the dispatchers to the new platform and context management API. The per-cpu
data framework APIs which took MPIDRs as their arguments are deleted and only
the ones which take core index as parameter are retained.
Change-Id: I839d05ad995df34d2163a1cfed6baa768a5a595d
This patch defines deprecated platform APIs to enable Trusted
Firmware components like Secure Payload and their dispatchers(SPD)
to continue to build and run when platform compatibility is disabled.
This decouples the migration of platform ports to the new platform API
from SPD and enables them to be migrated independently. The deprecated
platform APIs defined in this patch are : platform_get_core_pos(),
platform_get_stack() and platform_set_stack().
The patch also deprecates MPIDR based context management helpers like
cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context().
A mechanism to deprecate APIs and identify callers of these APIs during
build is introduced, which is controlled by the build flag WARN_DEPRECATED.
If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be
flagged either as a link error for assembly files or compile time warning
for C files during build.
Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613