Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address
for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To
cater for future ARM platforms this is made platform specific.
Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made
platform specific.
Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms
expect each platform to export its memory map in the `plat_arm_mmap`
data structure. This approach does not scale well in case the memory
map cannot be determined until runtime. To cater for this possibility,
this patch introduces the plat_arm_get_mmap() API. It returns a
reference to the `plat_arm_mmap` by default but can be overridden
by a platform if required.
Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
Each ARM Compute Subsystem based platform implements a System Security
Control (SSC) Registers Unit. The SSC_VERSION register inside it carries
information to identify the platform. This enables ARM Trusted Firmware
to compile in support for multiple ARM platforms and choose one at
runtime. This patch adds macros to enable access to this register.
Each platform is expected to export its PART_NUMBER separately.
Additionally, it also adds juno part number.
Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
This patch moves the definition of some macros used only on
ARM platforms from common headers to platform specific headers.
It also forces all ARM standard platforms to have distinct
definitions (even if they are usually the same).
1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been
moved from `css_def.h` to `platform_def.h`.
2. `MHU_BASE` used in CSS platforms is moved from common css_def.h
to platform specific header `platform_def.h` on Juno and
renamed as `PLAT_ARM_MHU_BASE`.
3. To cater for different sizes of BL images, new macros like
`PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All
ARM platforms need to define them for each image.
Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
Replaced a long dash in a comment by the ASCII character '-'. Support
for multibyte character in the source character set is not enforced by
the C99 standard. To maximize compatibility with C processing tools
(e.g. compilers or static code analysis tools), they should be removed.
Change-Id: Ie318e380d3b44755109f042a76ebfd2229f42ae3
The debug prints used to debug translation table setup in xlat_tables.c
used the `printf()` standard library function instead of the stack
optimized `tf_printf()` API. DEBUG_XLAT_TABLE option was used to enable
debug logs within xlat_tables.c and it configured a much larger stack
size for the platform in case it was enabled. This patch modifies these
debug prints within xlat_tables.c to use tf_printf() and modifies the format
specifiers to be compatible with tf_printf(). The debug prints are now enabled
if the VERBOSE prints are enabled in Trusted Firmware via LOG_LEVEL build
option.
The much larger stack size definition when DEBUG_XLAT_TABLE is defined
is no longer required and the platform ports are modified to remove this
stack size definition.
Change-Id: I2f7d77ea12a04b827fa15e2adc3125b1175e4c23
We found sometimes mtcmos operation is too long in spm (>1ms),
so update a new version to fix it.
I verified with 5 hours power_LoadTest, every mtcmos control
can finish in 500us (average is 100~200us).
Change-Id: I47b712bf9898870f4abcecbea47e01b9786231d4
Signed-off-by: Fan Chen <fan.chen@mediatek.com>
1. Set more wakeup source
2. Update PCM code for control logic
Change-Id: I2ad06bd85bd1c75a22c838eab4cf5566c443b89a
Signed-off-by: Weiyi Lu <weiyi.lu@mediatek.com>
1. Add SiP calls for subsystem power on/off and check support
2. Add subsystem power control related initialization in
bl31_plat_setup.c
3. Add subsystem power on/off and power ack waiting functions
4. Update PCM code for subsystem physical power control logic
Change-Id: Ia0ebb1964c8f9758159bcf17c1813d76ef52cf64
Signed-off-by: yt.lee <yt.lee@mediatek.com>
1. add power control for both big and Little cluster in MCDI
2. fix incorrect PCM_HOTPLUG_VALID_MASK in spm_hotplug.c
3. check the power status of cpus in cluster before setting the cputop
power control
Change-Id: Ifa85306a8bc218098667247904d281494c2f7bfe
Signed-off-by: Weiyi Lu <weiyi.lu@mediatek.com>
Move SPM related PLL settings to spm_boot_init in ARM TF SPM driver
Change-Id: I414b896caae072570c8de33a25e06db4ae011f57
Signed-off-by: yt.lee <yt.lee@mediatek.com>
This patch updates SPM driver settings and PCM code to fix USB remote
wake up problem.
Change-Id: I07a81cc64b1d226d111380580d09ae25879f4285
Signed-off-by: yt.lee <yt.lee@mediatek.com>
This patch enables dynamic clock management control to reduce power
consumption in various components.
Change-Id: I8f66d9b72c8b1d70169ffe46cc361b16a0dadb77
Signed-off-by: Jimmy Huang <jimmy.huang@mediatek.com>
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be
disabled before any of the control registers are programmed. The
PL011 driver included in TF does not disable the UART, so the
initialization in BL2 and BL31 is violating this requirement
(and potentially in BL1 if the UART is enabled after reset).
This patch modifies the initialization function in the PL011
console driver to disable the UART before programming the
control registers.
Register clobber list and documentation updated.
FixesARM-software/tf-issues#300
Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
Currently, Trusted Firmware on ARM platforms unlocks access to the
timer frame registers that will be used by the Non-Secure world. This
unlock operation should be done by the Non-Secure software itself,
instead of relying on secure firmware settings.
This patch adds a new ARM specific build option 'ARM_CONFIG_CNTACR'
to unlock access to the timer frame by setting the corresponding
bits in the CNTACR<N> register. The frame id <N> is defined by
'PLAT_ARM_NSTIMER_FRAME_ID'. Default value is true (unlock timer
access).
Documentation updated accordingly.
FixesARM-software/tf-issues#170
Change-Id: Id9d606efd781e43bc581868cd2e5f9c8905bdbf6
Migrate all direct usage of __attribute__ to usage of their
corresponding macros from cdefs.h.
e.g.:
- __attribute__((unused)) -> __unused
Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
This patch enables the ARM Cortex-A72 support in BL1 and BL31 on FVP.
This allows the same TF binaries to run on a Cortex-A72 based FVP
without recompiling them.
Change-Id: I4eb6bbad9f0e5d8704613f7c685c3bd22b45cf47
This patch adds support for ARM Cortex-A35 processor in the CPU
specific framework, as described in the Cortex-A35 TRM (r0p0).
Change-Id: Ief930a0bdf6cd82f6cb1c3b106f591a71c883464
The fip_create tool specifies images in the command line using the
ARM TF naming convention (--bl2, --bl31, etc), while the cert_create
tool uses the TBBR convention (--tb-fw, --soc-fw, etc). This double
convention is confusing and should be aligned.
This patch updates the fip_create command line options to follow the
TBBR naming convention. Usage examples in the User Guide have been
also updated.
NOTE: users that build the FIP by calling the fip_create tool directly
from the command line must update the command line options in their
scripts. Users that build the FIP by invoking the main ARM TF Makefile
should not notice any difference.
Change-Id: I84d602630a2585e558d927b50dfde4dd2112496f
fvp_pwr_domain_on() used to program the CPUs mailbox. This changed
with commit 804040d10 but the comment documenting this code still
refers to the mailbox programming. This patch removes this out-dated
information.
Change-Id: Ibfe2a426bdda6e71f20c83a99cb223ceca9c559c
The current FWU_SMC_UPDATE_DONE implementation incorrectly passes
an unused framework cookie through to the 1st argument in the
platform function `bl1_plat_fwu_done`. The intent is to allow
the SMC caller to pass a cookie through to this function.
This patch fixes FWU_SMC_UPDATE_DONE to pass x1 from the caller
through to `bl1_plat_fwu_done`. The argument names are updated
for clarity.
Upstream platforms currently do not use this argument so no
impact is expected.
Change-Id: I107f4b51eb03e7394f66d9a534ffab1cbc09a9b2
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:
https://github.com/ARM-software/arm-trusted-firmware/wiki
Changes apply to output messages, comments and documentation.
non-ARM platform files have been left unmodified.
Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
This patch replaces all references to the SCP Firmware (BL0, BL30,
BL3-0, bl30) with the image terminology detailed in the TF wiki
(https://github.com/ARM-software/arm-trusted-firmware/wiki):
BL0 --> SCP_BL1
BL30, BL3-0 --> SCP_BL2
bl30 --> scp_bl2
This change affects code, documentation, build system, tools and
platform ports that load SCP firmware. ARM plaforms have been
updated to the new porting API.
IMPORTANT: build option to specify the SCP FW image has changed:
BL30 --> SCP_BL2
IMPORTANT: This patch breaks compatibility for platforms that use BL2
to load SCP firmware. Affected platforms must be updated as follows:
BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
BL30_BASE --> SCP_BL2_BASE
bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()
Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
Firmware update feature needs a new FIP called `fwu_fip.bin` that
includes Secure(SCP_BL2U, BL2U) and Normal world(NS_BL2U) images
along with the FWU_CERT certificate in order for NS_BL1U to load
the images and help the Firmware update process to complete.
This patch adds the capability to support the new target `fwu_fip`
which includes above mentioned FWU images in the make files.
The new target of `fwu_fip` and its dependencies are included for
compilation only when `TRUSTED_BOARD_BOOT` is defined.
Change-Id: Ie780e3aac6cbd0edfaff3f9af96a2332bd69edbc
This patch adds support for Firmware update in BL2U for ARM
platforms such that TZC initialization is performed on all
ARM platforms and (optionally) transfer of SCP_BL2U image on
ARM CSS platforms.
BL2U specific functions are added to handle early_platform and
plat_arch setup. The MMU is configured to map in the BL2U
code/data area and other required memory.
Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
This patch adds Firmware Update support for ARM platforms.
New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide
platform specific Firmware update code.
BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for
authenticating NS_BL2U image(For both FVP and JUNO platform).
Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
Firmware update(a.k.a FWU) feature is part of the TBB architecture.
BL1 is responsible for carrying out the FWU process if platform
specific code detects that it is needed.
This patch adds support for FWU feature support in BL1 which is
included by enabling `TRUSTED_BOARD_BOOT` compile time flag.
This patch adds bl1_fwu.c which contains all the core operations
of FWU, which are; SMC handler, image copy, authentication, execution
and resumption. It also adds bl1.h introducing #defines for all
BL1 SMCs.
Following platform porting functions are introduced:
int bl1_plat_mem_check(uintptr_t mem_base, unsigned int mem_size,
unsigned int flags);
This function can be used to add platform specific memory checks
for the provided base/size for the given security state.
The weak definition will invoke `assert()` and return -ENOMEM.
__dead2 void bl1_plat_fwu_done(void *cookie, void *reserved);
This function can be used to initiate platform specific procedure
to mark completion of the FWU process.
The weak definition waits forever calling `wfi()`.
plat_bl1_common.c contains weak definitions for above functions.
FWU process starts when platform detects it and return the image_id
other than BL2_IMAGE_ID by using `bl1_plat_get_next_image_id()` in
`bl1_main()`.
NOTE: User MUST provide platform specific real definition for
bl1_plat_mem_check() in order to use it for Firmware update.
Change-Id: Ice189a0885d9722d9e1dd03f76cac1aceb0e25ed
As of now BL1 loads and execute BL2 based on hard coded information
provided in BL1. But due to addition of support for upcoming Firmware
Update feature, BL1 now require more flexible approach to load and
run different images using information provided by the platform.
This patch adds new mechanism to load and execute images based on
platform provided image id's. BL1 now queries the platform to fetch
the image id of the next image to be loaded and executed. In order
to achieve this, a new struct image_desc_t was added which holds the
information about images, such as: ep_info and image_info.
This patch introduces following platform porting functions:
unsigned int bl1_plat_get_next_image_id(void);
This is used to identify the next image to be loaded
and executed by BL1.
struct image_desc *bl1_plat_get_image_desc(unsigned int image_id);
This is used to retrieve the image_desc for given image_id.
void bl1_plat_set_ep_info(unsigned int image_id,
struct entry_point_info *ep_info);
This function allows platforms to update ep_info for given
image_id.
The plat_bl1_common.c file provides default weak implementations of
all above functions, the `bl1_plat_get_image_desc()` always return
BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return
BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns.
These functions gets compiled into all BL1 platforms by default.
Platform setup in BL1, using `bl1_platform_setup()`, is now done
_after_ the initialization of authentication module. This change
provides the opportunity to use authentication while doing the
platform setup in BL1.
In order to store secure/non-secure context, BL31 uses percpu_data[]
to store context pointer for each core. In case of BL1 only the
primary CPU will be active hence percpu_data[] is not required to
store the context pointer.
This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to
store the context and context pointers respectively. It also also
re-defines cm_get_context() and cm_set_context() for BL1 in
bl1/bl1_context_mgmt.c.
BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime
environment, to support resuming execution from a previously saved
context.
NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS
NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE
THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()`
INSTEAD TO MAINTAIN EXISTING BEHAVIOUR.
Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
This patch adds support for secure setup of the SoC on CSS
platforms in BL1.
This change is required to provide memory access to normal
world images that take part in upcoming Firmware Update feature.
Change-Id: Ib202fb6cb82622c1874b700637d82ea72575e6fe
This patch overrides the default weak definition of
`bl31_plat_runtime_setup()` for ARM Standard platforms to
specify a BL31 runtime console. ARM Standard platforms are
now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and
`PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required
by `arm_bl31_plat_runtime_setup()` to initialize the runtime
console.
The system suspend resume helper `arm_system_pwr_domain_resume()`
is fixed to initialize the runtime console rather than the boot
console on resumption from system suspend.
FixesARM-software/tf-issues#220
Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
It is not ideal for BL31 to continue to use boot console at
runtime which could be potentially uninitialized. This patch
introduces a new optional platform porting API
`bl31_plat_runtime_setup()` which allows the platform to perform
any BL31 runtime setup just prior to BL31 exit during cold boot.
The default weak implementation of this function will invoke
`console_uninit()` which will suppress any BL31 runtime logs.
On the ARM Standard platforms, there is an anomaly that
the boot console will be reinitialized on resumption from
system suspend in `arm_system_pwr_domain_resume()`. This
will be resolved in the following patch.
NOTE: The default weak definition of `bl31_plat_runtime_setup()`
disables the BL31 console. To print the BL31 runtime
messages, platforms must override this API and initialize a
runtime console.
FixesARM-software/tf-issues#328
Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
The `plat/nvidia/tegra/include/tegra_private.h` file uses resources
from psci.h (for example, psci_power_state_t) but does not explicitly
include psci.h. This does not currently cause a problem since psci.h
is indirectly included via other headers. However, this may not be
the case in future.
This patch explicitly includes psci.h from tegra_private.h
Change-Id: Ia991147898dbd117c1d3496a95850995a5554c05
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
separate drivers instead of providing a single driver that can work on both
versions of the GIC architecture. These drivers correspond to the following
software use cases:
1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
e.g. GIC-400
2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features
3. A deprecated GICv3 driver that operates in legacy mode. This driver can
operate only in the GICv2 mode in the secure world. On a GICv3 system, this
driver allows normal world to run in either GICv3 mode (asymmetric mode)
or in the GICv2 mode. Both modes of operation are deprecated on GICv3
systems.
ARM platforms implement both versions of the GIC architecture. This patch adds a
layer of abstraction to help ARM platform ports chose the right GIC driver and
corresponding platform support. This is as described below:
1. A set of ARM common functions have been introduced to initialise the GIC and
the driver during cold and warm boot. These functions are prefixed as
"plat_arm_gic_". Weak definitions of these functions have been provided for
each type of driver.
2. Each platform includes the sources that implement the right functions
directly into the its makefile. The FVP can be instantiated with different
versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
to specify which of the three drivers should be included in the build.
3. A list of secure interrupts has to be provided to initialise each of the
three GIC drivers. For GIC v3.0 the interrupt ids have to be further
categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
types are merged and treated as Group 0 interrupts.
The two lists of interrupts are exported from the platform_def.h. The lists
are constructed by adding a list of board specific interrupt ids to a list of
ids common to all ARM platforms and Compute sub-systems.
This patch also makes some fields of `arm_config` data structure in FVP redundant
and these unused fields are removed.
Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
This patch adds platform helpers for the new GICv2 and GICv3 drivers in
plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate
file in their build according to the GIC driver to be used. The existing
plat_gic.c is only meant for the legacy GIC driver.
In the case of ARM platforms, the major changes are as follows:
1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU
interface register values has been modified to detect the type of CPU
interface being used (System register or memory mappped interface) before
using the right interface to print the registers.
2. The power management helper function that is called after a core is powered
up has been further refactored. This is to highlight that the per-cpu
distributor interface should be initialised only when the core was originally
powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API
was used.
3. In the case of CSS platforms, the system power domain restore helper
`arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish`
handler as the system power domain is always expected to be initialized when
the `on_finish` handler is invoked.
Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
This patch modifies the Tegra port to support the new platform
APIs so that we can disable the compat layer. This includes
modifications to the power management and platform topology code.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This patch fixes several issues with the SP804 delay timer on FVP:
* By default, the SP804 dual timer on FVP runs at 32 KHz. In order
to run the timer at 35 MHz (as specified in the FVP user manual)
the Overwrite bit in the SP810 control register must be set.
* The CLKMULT and CLKDIV definitions are mixed up:
delta(us) = delta(ticks) * T(us) = delta(ticks) / f(MHz)
From the delay function:
delta_us = (delta * ops->clk_mult) / ops->clk_div;
Matching both expressions:
1 / f(MHz) = ops->clk_mult / ops->clk_div
And consequently:
f(MHz) = ops->clk_div / ops->clk_mult
Which, for a 35 MHz timer, translates to:
ops->clk_div = 35
ops->clk_mult = 1
* The comment in the delay timer header file has been corrected:
The ratio of the multiplier and the divider is the clock period
in microseconds, not the frequency.
Change-Id: Iffd5ce0a5a28fa47c0720c0336d81b678ff8fdf1
This patch adds watchdog support on ARM platforms (FVP and Juno).
A secure instance of SP805 is used as Trusted Watchdog. It is
entirely managed in BL1, being enabled in the early platform setup
hook and disabled in the exit hook. By default, the watchdog is
enabled in every build (even when TBB is disabled).
A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
has been introduced to allow the user to disable the watchdog at
build time. This feature may be used for testing or debugging
purposes.
Specific error handlers for Juno and FVP are also provided in this
patch. These handlers will be called after an image load or
authentication error. On FVP, the Table of Contents (ToC) in the FIP
is erased. On Juno, the corresponding error code is stored in the
V2M Non-Volatile flags register. In both cases, the CPU spins until
a watchdog reset is generated after 256 seconds (as specified in
the TBBR document).
Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
FVP and Juno platforms include a NOR flash memory to store and
load the FIP, the kernel or a ramdisk. This NOR flash is arranged
as 2 x 16 bit flash devices and can be programmed using CFI
standard commands.
This patch provides a basic API to write single 32 bit words of
data into the NOR flash. Functions to lock/unlock blocks against
erase or write operations are also provided.
Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
Normally, in the FVP port, secondary CPUs are immediately powered
down if they are powered on at reset. However, when booting an EL3
payload, we need to keep them powered on as the requirement is for
all CPUs to enter the EL3 payload image. This patch puts them in a
holding pen instead of powering them off.
Change-Id: I6526a88b907a0ddb820bead72f1d350a99b1692c
By default, only the primary CPU is powered on by SCP on CSS
platforms. Secondary CPUs are then powered on later using PSCI
calls.
However, it is possible to power on more than one CPU at boot time
using platform specific settings. In this case, several CPUs will
enter the Trusted Firmware and execute the cold boot path code.
This is currently not supported and secondary CPUs will panic.
This patch preserves this behaviour in the normal boot flow.
However, when booting an EL3 payload, secondary CPUs are now held in
a pen until their mailbox is populated, at which point they jump to
this address. Note that, since all CPUs share the same mailbox, they
will all be released from their holding pen at the same time and the
EL3 payload is responsible to arbitrate execution between CPUs if
required.
Change-Id: I83737e0c9f15ca5e73afbed2e9c761bc580735b9
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.
Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.
The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.
The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.
The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.
This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.
Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
This patch modifies the prototype of the bl1_plat_prepare_exit()
platform API to pass the address of the entry point info structure
received from BL2. The structure contains information that can be
useful, depending on the kind of clean up or bookkeeping operations
to perform.
The weak implementation of this function ignores this argument to
preserve platform backwards compatibility.
NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE
FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API.
Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
This patch renames the tegra_fc_cpu_idle() function to a more appropriate
tegra_fc_cpu_powerdn() to better reflect its usage.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
The default reset values for the L2 Data & Tag RAM latencies on the
Cortex-A72 on Juno R2 are not suitable. This patch modifies
the Juno platform reset handler to configure the right settings
on Juno R2.
Change-Id: I20953de7ba0619324a389e0b7bbf951b64057db8
This patch splits the Juno reset handler in 4 distinct pieces:
- Detection of the board revision;
- Juno R0 specific handler;
- Juno R1 specific handler;
- Juno R2 specific handler.
Depending on the board revision, the appropriate handler is called.
This makes the code easier to understand and maintain.
This patch is mainly cosmetic. The only functional change introduced
is that the Juno platform reset handler will now spin infinitely if
the board revision is not recognised. Previously, it would have
assumed that it was running on Juno R1 in this case.
Change-Id: I54ed77c4665085ead9d1573316c9c884d7d3ffa0
BL2 is responsible for loading BL32 and passing a pointer to the
BL32 entrypoint info to BL31 in the BL31 parameters. If no BL32
image is loaded, a NULL pointer is passed. The platform is
responsible for accessing BL31 parameters and extracting the
corresponding BL32 EP info.
In ARM platforms, arm_bl31_early_platform_setup() dereferences the
pointer to the BL32 EP info without checking first if the pointer
is NULL. This will cause an exception if a BL32 entrypoint has not
been populated by BL2. FVP and Juno are not affected because they
always define BL32_BASE, irrespective of whether a BL32 image is
included in the FIP or not.
This patches fixes the issue by checking the BL32 ep_info pointer
before trying to access the data.
If `RESET_TO_BL31` is enabled, the BL32 entrypoint is not
populated if BL32_BASE is not defined.
NOTE: Maintainers of partner platforms should check for this issue
in their ports.
FixesARM-software/tf-issues#320
Change-Id: I31456155503f2765766e8b7cd30ab4a40958fb96
This patch adds a per-soc system reset handler for Tegra chips. The
handler gets executed before the actual system resets. This allows
for custom handling of the system reset sequence on each SoC.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
Cortex-A72 library support is now compiled into the Juno platform port to go
with the existing A53/A57 support. This enables a single set of Juno TF
binaries to run on Juno R0, R1 and R2 boards.
Change-Id: I4a601dc4f671e98bdb19d98bbb66f02f0d8b7fc7