This patch introduces macros (SPSR_64 and SPSR_32) to
create a SPSR for both aarch32 and aarch64 execution
states. These macros allow the user to set fields
in the SPSR depending upon its format.
The make_spsr() function which did not allow
manipulation of all the fields in the aarch32 SPSR
has been replaced by these new macros.
Change-Id: I9425dda0923e8d5f03d03ddb8fa0e28392c4c61e
This patch implements the register reporting when unhandled exceptions are
taken in BL3-1. Unhandled exceptions will result in a dump of registers
to the console, before halting execution by that CPU. The Crash Stack,
previously called the Exception Stack, is used for this activity.
This stack is used to preserve the CPU context and runtime stack
contents for debugging and analysis.
This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3,
to provide easy access to some of BL3-1 per-cpu data structures.
Initially, this is used to provide a pointer to the Crash stack.
panic() now prints the the error file and line number in Debug mode
and prints the PC value in release mode.
The Exception Stack is renamed to Crash Stack with this patch.
The original intention of exception stack is no longer valid
since we intend to support several valid exceptions like IRQ
and FIQ in the trusted firmware context. This stack is now
utilized for dumping and reporting the system state when a
crash happens and hence the rename.
FixesARM-software/tf-issues#79 Improve reporting of unhandled exception
Change-Id: I260791dc05536b78547412d147193cdccae7811a
Instead of having a single version of the MMU setup functions for all
bootloader images that can execute either in EL3 or in EL1, provide
separate functions for EL1 and EL3. Each bootloader image can then
call the appropriate version of these functions. The aim is to reduce
the amount of code compiled in each BL image by embedding only what's
needed (e.g. BL1 to embed only EL3 variants).
Change-Id: Ib86831d5450cf778ae78c9c1f7553fe91274c2fa
Previously exception handlers in BL3-1, X19-X29 were not saved
and restored on every SMC/trap into EL3. Instead these registers
were 'saved as needed' as a side effect of the A64 ABI used by the C
compiler.
That approach failed when world switching but was not visible
with the TSP/TSPD code because the TSP is 64-bit, did not
clobber these registers when running and did not support pre-emption
by normal world interrupts. These scenarios showed
that the values in these registers can be passed through a world
switch, which broke the normal and trusted world assumptions
about these registers being preserved.
The Ideal solution saves and restores these registers when a
world switch occurs - but that type of implementation is more complex.
So this patch always saves and restores these registers on entry and
exit of EL3.
FixesARM-software/tf-issues#141
Change-Id: I9a727167bbc594454e81cf78a97ca899dfb11c27
Instead of using the system register helper functions to read
or write system registers, assembler coded functions should
use MRS/MSR instructions. This results in faster and more
compact code.
This change replaces all usage of the helper functions with
direct register accesses.
Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
The current code does not always use data and instruction
barriers as required by the architecture and frequently uses
barriers excessively due to their inclusion in all of the
write_*() helper functions.
Barriers should be used explicitly in assembler or C code
when modifying processor state that requires the barriers in
order to enable review of correctness of the code.
This patch removes the barriers from the helper functions and
introduces them as necessary elsewhere in the code.
PORTING NOTE: check any port of Trusted Firmware for use of
system register helper functions for reliance on the previous
barrier behaviour and add explicit barriers as necessary.
FixesARM-software/tf-issues#92
Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
Update code base to remove variables from the .data section,
mainly by using const static data where possible and adding
the const specifier as required. Most changes are to the IO
subsystem, including the framework APIs. The FVP power
management code is also affected.
Delay initialization of the global static variable,
next_image_type in bl31_main.c, until it is realy needed.
Doing this moves the variable from the .data to the .bss
section.
Also review the IO interface for inconsistencies, using
uintptr_t where possible instead of void *. Remove the
io_handle and io_dev_handle typedefs, which were
unnecessary, replacing instances with uintptr_t.
FixesARM-software/tf-issues#107.
Change-Id: I085a62197c82410b566e4698e5590063563ed304
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
FixesARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
Add tag names to all unnamed structs in header files. This
allows forward declaration of structs, which is necessary to
reduce header file nesting (to be implemented in a subsequent
commit).
Also change the typedef names across the codebase to use the _t
suffix to be more conformant with the Linux coding style. The
coding style actually prefers us not to use typedefs at all but
this is considered a step too far for Trusted Firmware.
Also change the IO framework structs defintions to use typedef'd
structs to be consistent with the rest of the codebase.
Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
Move the PSCI global functions out of psci_private.h and into
psci.h to allow the standard service to only depend on psci.h.
Change-Id: I8306924a3814b46e70c1dcc12524c7aefe06eed1
Move the BL function prototypes out of arch.h and into the
appropriate header files to allow more efficient header file
inclusion. Create new BL private header files where there is no
sensible existing header file.
Change-Id: I45f3e10b72b5d835254a6f25a5e47cf4cfb274c3
Make codebase consistent in its use of #include "" syntax for
user includes and #include <> syntax for system includes.
FixesARM-software/tf-issues#65
Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
This patch saves the 'power_state' parameter prior to suspending
a cpu and invalidates it upon its resumption. The 'affinity level'
and 'state id' fields of this parameter can be read using a set of
public and private apis. Validation of power state parameter is
introduced which checks for SBZ bits are zero.
This change also takes care of flushing the parameter from the cache
to main memory. This ensures that it is available after cpu reset
when the caches and mmu are turned off. The earlier support for
saving only the 'affinity level' field of the 'power_state' parameter
has also been reworked.
FixesARM-Software/tf-issues#26FixesARM-Software/tf-issues#130
Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
This extends the --gc-sections behaviour to the many assembler
support functions in the firmware images by placing each function
into its own code section. This is achieved by creating a 'func'
macro used to declare each function label.
FixesARM-software/tf-issues#80
Change-Id: I301937b630add292d2dec6d2561a7fcfa6fec690
This patch adds support in the generic PSCI implementation to call a
platform specific function to enter a standby state using an example
implementation in ARM FVP port
FixesARM-software/tf-issues#94
Change-Id: Ic1263fcf25f28e09162ad29dca954125f9aa8cc9
Each ARM Trusted Firmware image should know in which EL it is running
and it should use the corresponding register directly instead of reading
currentEL and knowing which asm register to read/write
Change-Id: Ief35630190b6f07c8fbb7ba6cb20db308f002945
This patch implements ARM Standard Service as a runtime service and adds
support for call count, UID and revision information SMCs. The existing
PSCI implementation is subsumed by the Standard Service calls and all
PSCI calls are therefore dispatched by the Standard Service to the PSCI
handler.
At present, PSCI is the only specification under Standard Service. Thus
call count returns the number of PSCI calls implemented. As this is the
initial implementation, a revision number of 0.1 is returned for call
revision.
FixesARM-software/tf-issues#62
Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1