In ras_interrupt_handler(), binary search end was set to the size of
the ras_interrupt_mappings array, which would cause out of bound
access when the input intr_raw is larger than all the elements in
ras_interrupt_mappings.
Signed-off-by: Heyi Guo <guoheyi@linux.alibaba.com>
Change-Id: Id2cff73177134b09d4d8beb596c3429b98ec5066
This patch adds all Tegra194 RAS nodes definitions and support to
handle all uncorrectable RAS errors.
Change-Id: I109b5a8dbca91d92752dc282c4ca30f273c475f9
Signed-off-by: David Pu <dpu@nvidia.com>
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This ensures that probe_data starts with a reasonable default, as
opposed to whatever was left on the stack.
Change-Id: I5550efea5e2bec7717f9fa063cb11e6a7005cce5
Signed-off-by: Justin Chadwell <justin.chadwell@arm.com>
Enforce full include path for includes. Deprecate old paths.
The following folders inside include/lib have been left unchanged:
- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}
The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).
For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").
This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.
Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.
Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Mark the initialization functions in BL31, such as context management,
EHF, RAS and PSCI as __init so that they can be reclaimed by the
platform when no longer needed
Change-Id: I7446aeee3dde8950b0f410cb766b7a2312c20130
Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
These changes address most of the required MISRA rules. In the process,
some from generic code is also fixed.
No functional changes.
Change-Id: I76cacf6e1d73b09510561b5090c2bb66d81bec88
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Add a null pointer check for the error record probe
function -- avoids a panic in case a platform has not defined it.
Change-Id: I1139fa0df33297a12ec16615cacd07540925f991
Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com>
EHF currently allows for registering interrupt handlers for a defined
priority ranges. This is primarily targeted at various EL3 dispatchers
to own ranges of secure interrupt priorities in order to delegate
execution to lower ELs.
The RAS support added by earlier patches necessitates registering
handlers based on interrupt number so that error handling agents shall
receive and handle specific Error Recovery or Fault Handling interrupts
at EL3.
This patch introduces a macro, RAS_INTERRUPTS() to declare an array of
interrupt numbers and handlers. Error handling agents can use this macro
to register handlers for individual RAS interrupts. The array is
expected to be sorted in the increasing order of interrupt numbers.
As part of RAS initialisation, the list of all RAS interrupts are sorted
based on their ID so that, given an interrupt, its handler can be looked
up with a simple binary search.
For an error handling agent that wants to handle a RAS interrupt,
platform must:
- Define PLAT_RAS_PRI to be the priority of all RAS exceptions.
- Enumerate interrupts to have the GIC driver program individual EL3
interrupts to the required priority range. This is required by EHF
even before this patch.
Documentation to follow.
Change-Id: I9471e4887ff541f8a7a63309e9cd8f771f76aeda
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Previous patches added frameworks for handling RAS errors. This patch
introduces features that the platform can use to enumerate and iterate
RAS nodes:
- The REGISTER_RAS_NODES() can be used to expose an array of
ras_node_info_t structures. Each ras_node_info_t describes a RAS
node, along with handlers for probing the node for error, and if
did record an error, another handler to handle it.
- The macro for_each_ras_node() can be used to iterate over the
registered RAS nodes, probe for, and handle any errors.
The common platform EA handler has been amended using error handling
primitives introduced by both this and previous patches.
Change-Id: I2e13f65a88357bc48cd97d608db6c541fad73853
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The ARMv8 RAS Extensions introduced Standard Error Records which are a
set of standard registers through which:
- Platform can configure RAS node policy; e.g., notification
mechanism;
- RAS nodes can record and expose error information for error handling
agents.
Standard Error Records can either be accessed via. memory-mapped
or System registers. This patch adds helper functions to access
registers and fields within an error record.
Change-Id: I6594ba799f4a1789d7b1e45b3e17fd40e7e0ba5c
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>