On DynamIQ CPU FVPs, stats test cases are failing when
hardware-assisted coherency is enabled due to a corrupt
timestamp value. Investigation of the issue indicates that
on these models the timestamp value is stored in cache
instead of memory. This patch flushes the dcache when the
timestamp is stored to make sure it is stored in memory.
Change-Id: I05cd54ba5991a5a96dd07f1e08b5212273201411
Signed-off-by: Zelalem <zelalem.aweke@arm.com>
This patch moves the MHZ_TICKS_PER_SEC macro to utils_def.h
for other platforms to use.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
Change-Id: I6c4dc733f548d73cfdb3515ec9ad89a9efaf4407
NOTE for platform integrators:
API `plat_psci_stat_get_residency()` third argument
`last_cpu_idx` is changed from "signed int" to the
"unsigned int" type.
Issue / Trouble points
1. cpu_idx is used as mix of `unsigned int` and `signed int` in code
with typecasting at some places leading to coverity issues.
2. Underlying platform API's return cpu_idx as `unsigned int`
and comparison is performed with platform specific defines
`PLAFORM_xxx` which is not consistent
Misra Rule 10.4:
The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression.
Based on above points, cpu_idx is kept as `unsigned int` to match
the API's and low-level functions and platform defines are updated
where ever required
Signed-off-by: Deepika Bhavnani <deepika.bhavnani@arm.com>
Change-Id: Ib26fd16e420c35527204b126b9b91e8babcc3a5c
In further patches, we aim to enable -Wredundant-decls by default.
This rearragement of helper macros is necessary to make Coverity
tool happy as well as making sure there are no redundant function
declarations for PMF related declarations.
Also, PMF related macros were added to provide appropriate function
declarations for helper APIs which capture PSCI statistics.
Change-Id: I36273032dde8fa079ef71235ed3a4629c5bfd981
Signed-off-by: Madhukar Pappireddy <madhukar.pappireddy@arm.com>
NOTE: AARCH32/AARCH64 macros are now deprecated in favor of __aarch64__.
All common C compilers pre-define the same macros to signal which
architecture the code is being compiled for: __arm__ for AArch32 (or
earlier versions) and __aarch64__ for AArch64. There's no need for TF-A
to define its own custom macros for this. In order to unify code with
the export headers (which use __aarch64__ to avoid another dependency),
let's deprecate the AARCH32 and AARCH64 macros and switch the code base
over to the pre-defined standard macro. (Since it is somewhat
unintuitive that __arm__ only means AArch32, let's standardize on only
using __aarch64__.)
Change-Id: Ic77de4b052297d77f38fc95f95f65a8ee70cf200
Signed-off-by: Julius Werner <jwerner@chromium.org>
Enforce full include path for includes. Deprecate old paths.
The following folders inside include/lib have been left unchanged:
- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}
The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).
For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").
This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.
Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.
Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This patch includes various fixes for PSCI STAT functionality
relating to timestamp collection:
1. The PSCI stat accounting for retention states for higher level
power domains were done outside the locks which could lead to
spurious values in some race conditions. This is moved inside
the locks. Also, the call to start the stat accounting was redundant
which is now removed.
2. The timestamp wrap-around case when calculating residency did
not cater for AArch32. This is now fixed.
3. In the warm boot path, `plat_psci_stat_accounting_stop()` was
getting invoked prior to population of target power states. This
is now corrected.
Change-Id: I851526455304fb74ff0a724f4d5318cd89e19589
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.
NOTE: Files that have been imported by FreeBSD have not been modified.
[0]: https://spdx.org/
Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
This patch introduces the following three platform interfaces:
* void plat_psci_stat_accounting_start(const psci_power_state_t *state_info)
This is an optional hook that platforms can implement in order
to perform accounting before entering a low power state. This
typically involves capturing a timestamp.
* void plat_psci_stat_accounting_stop(const psci_power_state_t *state_info)
This is an optional hook that platforms can implement in order
to perform accounting after exiting from a low power state. This
typically involves capturing a timestamp.
* u_register_t plat_psci_stat_get_residency(unsigned int lvl,
const psci_power_state_t *state_info,
unsigned int last_cpu_index)
This is an optional hook that platforms can implement in order
to calculate the PSCI stat residency.
If any of these interfaces are overridden by the platform, it is
recommended that all of them are.
By default `ENABLE_PSCI_STAT` is disabled. If `ENABLE_PSCI_STAT`
is set but `ENABLE_PMF` is not set then an alternative PSCI stat
collection backend must be provided. If both are set, then default
weak definitions of these functions are provided, using PMF to
calculate the residency.
NOTE: Previously, platforms did not have to explicitly set
`ENABLE_PMF` since this was automatically done by the top-level
Makefile.
Change-Id: I17b47804dea68c77bc284df15ee1ccd66bc4b79b
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:
* The runtime services framework is now moved to the `common/` folder to
enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
to `plat/common` folder. The original file location now has a stub which
just includes the file from new location to maintain platform compatibility.
Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.
NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
The state-id field in the power-state parameter of a CPU_SUSPEND call can be
used to describe composite power states specific to a platform. The current PSCI
implementation does not interpret the state-id field. It relies on the target
power level and the state type fields in the power-state parameter to perform
state coordination and power management operations. The framework introduced
in this patch allows the PSCI implementation to intepret generic global states
like RUN, RETENTION or OFF from the State-ID to make global state coordination
decisions and reduce the complexity of platform ports. It adds support to
involve the platform in state coordination which facilitates the use of
composite power states and improves the support for entering standby states
at multiple power domains.
The patch also includes support for extended state-id format for the power
state parameter as specified by PSCIv1.0.
The PSCI implementation now defines a generic representation of the power-state
parameter. It depends on the platform port to convert the power-state parameter
(possibly encoding a composite power state) passed in a CPU_SUSPEND call to this
representation via the `validate_power_state()` plat_psci_ops handler. It is an
array where each index corresponds to a power level. Each entry contains the
local power state the power domain at that power level could enter.
The meaning of the local power state values is platform defined, and may vary
between levels in a single platform. The PSCI implementation constrains the
values only so that it can classify the state as RUN, RETENTION or OFF as
required by the specification:
* zero means RUN
* all OFF state values at all levels must be higher than all RETENTION
state values at all levels
* the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values
to the framework
The platform also must define the macros PLAT_MAX_RET_STATE and
PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power
domains have been requested to enter a retention or power down state. The PSCI
implementation does not interpret the local power states defined by the
platform. The only constraint is that the PLAT_MAX_RET_STATE <
PLAT_MAX_OFF_STATE.
For a power domain tree, the generic implementation maintains an array of local
power states. These are the states requested for each power domain by all the
cores contained within the domain. During a request to place multiple power
domains in a low power state, the platform is passed an array of requested
power-states for each power domain through the plat_get_target_pwr_state()
API. It coordinates amongst these states to determine a target local power
state for the power domain. A default weak implementation of this API is
provided in the platform layer which returns the minimum of the requested
power-states back to the PSCI state coordination.
Finally, the plat_psci_ops power management handlers are passed the target
local power states for each affected power domain using the generic
representation described above. The platform executes operations specific to
these target states.
The platform power management handler for placing a power domain in a standby
state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for
placing a core power domain into a standby or retention state should now be
used to only place the core power domain in a standby or retention state.
The extended state-id power state format can be enabled by setting the
build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default.
Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
This major change pulls out the common functionality from the
FVP and Juno platform ports into the following categories:
* (include/)plat/common. Common platform porting functionality that
typically may be used by all platforms.
* (include/)plat/arm/common. Common platform porting functionality
that may be used by all ARM standard platforms. This includes all
ARM development platforms like FVP and Juno but may also include
non-ARM-owned platforms.
* (include/)plat/arm/board/common. Common platform porting
functionality for ARM development platforms at the board
(off SoC) level.
* (include/)plat/arm/css/common. Common platform porting
functionality at the ARM Compute SubSystem (CSS) level. Juno
is an example of a CSS-based platform.
* (include/)plat/arm/soc/common. Common platform porting
functionality at the ARM SoC level, which is not already defined
at the ARM CSS level.
No guarantees are made about the backward compatibility of
functionality provided in (include/)plat/arm.
Also remove any unnecessary variation between the ARM development
platform ports, including:
* Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
Juno implementation, which copies the information from BL2 memory
instead of expecting it to persist in shared memory.
* Unify the TZC configuration. There is no need to add a region
for SCP in Juno; it's enough to simply not allow any access to
this reserved region. Also set region 0 to provide no access by
default instead of assuming this is the case.
* Unify the number of memory map regions required for ARM
development platforms, although the actual ranges mapped for each
platform may be different. For the FVP port, this reduces the
mapped peripheral address space.
These latter changes will only be observed when the platform ports
are migrated to use the new common platform code in subsequent
patches.
Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
All coding style violations have been fixed in a previous patch and
since then, each individual patch has been checked in this regard.
However, the latest version of the checkpatch.pl script from the Linux
kernel is more advanced and it is able to flag new errors in the
Trusted Firmware codebase. This patch fixes them.
Change-Id: I1f332f2440984be85d36b231bb83260368987077
This patch removes the plat_get_max_afflvl() platform API
and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL.
This is done because the maximum affinity level for a platform
is a static value and it is more efficient for it to be defined
as a platform macro.
NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT
FixesARM-Software/tf-issues#265
Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
This patch adds the initial port of the ARM Trusted Firmware on the Juno
development platform. This port does not support a BL3-2 image or any PSCI APIs
apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected
Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno
platform errata (Defect id 831273).
Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
This patch reworks the crash reporting mechanism to further
optimise the stack and code size. The reporting makes use
of assembly console functions to avoid calling C Runtime
to report the CPU state. The crash buffer requirement is
reduced to 64 bytes with this implementation. The crash
buffer is now part of per-cpu data which makes retrieving
the crash buffer trivial.
Also now panic() will use crash reporting if
invoked from BL3-1.
FixesARM-software/tf-issues#199
Change-Id: I79d27a4524583d723483165dc40801f45e627da5
This patch prepares the per-cpu pointer cache for wider use by:
* renaming the structure to cpu_data and placing in new header
* providing accessors for this CPU, or other CPUs
* splitting the initialization of the TPIDR pointer from the
initialization of the cpu_data content
* moving the crash stack initialization to a crash stack function
* setting the TPIDR pointer very early during boot
Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
Update code base to remove variables from the .data section,
mainly by using const static data where possible and adding
the const specifier as required. Most changes are to the IO
subsystem, including the framework APIs. The FVP power
management code is also affected.
Delay initialization of the global static variable,
next_image_type in bl31_main.c, until it is realy needed.
Doing this moves the variable from the .data to the .bss
section.
Also review the IO interface for inconsistencies, using
uintptr_t where possible instead of void *. Remove the
io_handle and io_dev_handle typedefs, which were
unnecessary, replacing instances with uintptr_t.
FixesARM-software/tf-issues#107.
Change-Id: I085a62197c82410b566e4698e5590063563ed304
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
FixesARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
Move almost all system include files to a logical sub-directory
under ./include. The only remaining system include directories
not under ./include are specific to the platform. Move the
corresponding source files to match the include directory
structure.
Also remove pm.h as it is no longer used.
Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
The Firmware Image Package (FIP) driver allows for data to be loaded
from a FIP on platform storage. The FVP supports loading bootloader
images from a FIP located in NOR FLASH.
The implemented FVP policy states that bootloader images will be
loaded from a FIP in NOR FLASH if available and fall back to loading
individual images from semi-hosting.
NOTE:
- BL3-3(e.g. UEFI) is loaded into DRAM and needs to be configured
to run from the BL33_BASE address. This is currently set to
DRAM_BASE+128MB for the FVP.
Change-Id: I2e4821748e3376b5f9e467cf3ec09509e43579a0
The modified implementation uses the IO abstraction rather than
making direct semi-hosting calls. The semi-hosting driver is now
registered for the FVP platform during initialisation of each boot
stage where it is used. Additionally, the FVP platform includes a
straightforward implementation of 'plat_get_image_source' which
provides a generic means for the 'load_image' function to determine
how to access the image data.
Change-Id: Ia34457b471dbee990c7b3c79de7aee4ceea51aa6
Ctags seem to have a problem with generating tags for assembler symbols
when a comment immediately follows an assembly label.
This patch inserts a single space character between the label
definition and the following comments to help ctags.
The patch is generated by the command:
git ls-files -- \*.S | xargs sed -i 's/^\([^:]\+\):;/\1: ;/1'
Change-Id: If7a3c9d0f51207ea033cc8b8e1b34acaa0926475
- Add instructions for contributing to ARM Trusted Firmware.
- Update copyright text in all files to acknowledge contributors.
Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5