This patch implements the register reporting when unhandled exceptions are
taken in BL3-1. Unhandled exceptions will result in a dump of registers
to the console, before halting execution by that CPU. The Crash Stack,
previously called the Exception Stack, is used for this activity.
This stack is used to preserve the CPU context and runtime stack
contents for debugging and analysis.
This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3,
to provide easy access to some of BL3-1 per-cpu data structures.
Initially, this is used to provide a pointer to the Crash stack.
panic() now prints the the error file and line number in Debug mode
and prints the PC value in release mode.
The Exception Stack is renamed to Crash Stack with this patch.
The original intention of exception stack is no longer valid
since we intend to support several valid exceptions like IRQ
and FIQ in the trusted firmware context. This stack is now
utilized for dumping and reporting the system state when a
crash happens and hence the rename.
FixesARM-software/tf-issues#79 Improve reporting of unhandled exception
Change-Id: I260791dc05536b78547412d147193cdccae7811a
The goal of these macros is to improve code readability by providing
a concise way to check whether we are running in the expected
exception level.
Change-Id: If9aebadfb6299a5196e9a582b442f0971d9909b1
Update code base to remove variables from the .data section,
mainly by using const static data where possible and adding
the const specifier as required. Most changes are to the IO
subsystem, including the framework APIs. The FVP power
management code is also affected.
Delay initialization of the global static variable,
next_image_type in bl31_main.c, until it is realy needed.
Doing this moves the variable from the .data to the .bss
section.
Also review the IO interface for inconsistencies, using
uintptr_t where possible instead of void *. Remove the
io_handle and io_dev_handle typedefs, which were
unnecessary, replacing instances with uintptr_t.
FixesARM-software/tf-issues#107.
Change-Id: I085a62197c82410b566e4698e5590063563ed304
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
FixesARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
Add tag names to all unnamed structs in header files. This
allows forward declaration of structs, which is necessary to
reduce header file nesting (to be implemented in a subsequent
commit).
Also change the typedef names across the codebase to use the _t
suffix to be more conformant with the Linux coding style. The
coding style actually prefers us not to use typedefs at all but
this is considered a step too far for Trusted Firmware.
Also change the IO framework structs defintions to use typedef'd
structs to be consistent with the rest of the codebase.
Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
Make codebase consistent in its use of #include "" syntax for
user includes and #include <> syntax for system includes.
FixesARM-software/tf-issues#65
Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
Move almost all system include files to a logical sub-directory
under ./include. The only remaining system include directories
not under ./include are specific to the platform. Move the
corresponding source files to match the include directory
structure.
Also remove pm.h as it is no longer used.
Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
bl1/aarch64/early_exceptions.S used to be re-used by BL2, BL3-1 and
BL3-2. There was some early SMC handling code in there that was not
required by the other bootloader stages. Therefore this patch
introduces an even simpler exception vector source file for BL2,
BL3-1 and BL3-2.
FixesARM-software/tf-issues#38
Change-Id: I0244b80e9930b0f8035156a0bf91cc3e9a8f995d
Each ARM Trusted Firmware image should know in which EL it is running
and it should use the corresponding register directly instead of reading
currentEL and knowing which asm register to read/write
Change-Id: Ief35630190b6f07c8fbb7ba6cb20db308f002945
FixesARM-software/tf-issues#42
Some callers of load_image() may need to get the size of the image
before/after loading it.
Change-Id: I8dc067b69fc711433651a560ba5a8c3519445857
Signed-off-by: Ryan Harkin <ryan.harkin@linaro.org>
At present, the firmware panics if a runtime service fails to
initialize. An earlier patch had implemented late binding for all
runtime service handlers.
With that in place, this patch allows the firmware to proceed even when
a service fails to initialize.
Change-Id: I6cf4de2cecea9719f4cd48272a77cf459b080d4e
At present many recoverable failures are reported as errors. This patch
modifies all such failures to be reported as warnings instead.
Change-Id: I5141653c82498defcada9b90fdf7498ba496b2f2
This patch creates a 'services' directory and moves the PSCI under
it. Other runtime services e.g. the Secure Payload Dispatcher service
will be placed under the same directory in the future.
Also fixes issue ARM-software/tf-issues#12
Change-Id: I187f83dcb660b728f82155d91882e961d2255068
This patch reworks BL2 to BL3-1 hand over interface by introducing a
composite structure (bl31_args) that holds the superset of information
that needs to be passed from BL2 to BL3-1.
- The extents of secure memory available to BL3-1
- The extents of memory available to BL3-2 (not yet implemented) and
BL3-3
- Information to execute BL3-2 (not yet implemented) and BL3-3 images
This patch also introduces a new platform API (bl2_get_bl31_args_ptr)
that needs to be implemented by the platform code to export reference to
bl31_args structure which has been allocated in platform-defined memory.
The platform will initialize the extents of memory available to BL3-3
during early platform setup in bl31_args structure. This obviates the
need for bl2_get_ns_mem_layout platform API.
BL2 calls the bl2_get_bl31_args_ptr function to get a reference to
bl31_args structure. It uses the 'bl33_meminfo' field of this structure
to load the BL3-3 image. It sets the entry point information for the
BL3-3 image in the 'bl33_image_info' field of this structure. The
reference to this structure is passed to the BL3-1 image.
Also fixes issue ARM-software/tf-issues#25
Change-Id: Ic36426196dd5ebf89e60ff42643bed01b3500517
This patch uses the reworked exception handling support to handle
runtime service requests through SMCs following the SMC calling
convention. This is a giant commit since all the changes are
inter-related. It does the following:
1. Replace the old exception handling mechanism with the new one
2. Enforce that SP_EL0 is used C runtime stacks.
3. Ensures that the cold and warm boot paths use the 'cpu_context'
structure to program an ERET into the next lower EL.
4. Ensures that SP_EL3 always points to the next 'cpu_context'
structure prior to an ERET into the next lower EL
5. Introduces a PSCI SMC handler which completes the use of PSCI as a
runtime service
Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
This patch introduces the reworked exception handling logic which lays
the foundation for accessing runtime services in later patches. The
type of an exception has a greater say in the way it is
handled. SP_EL3 is used as the stack pointer for:
1. Determining the type of exception and handling the unexpected ones
on the exception stack
2. Saving and restoring the essential general purpose and system
register state after exception entry and prior to exception exit.
SP_EL0 is used as the stack pointer for handling runtime service
requests e.g. SMCs. A new structure for preserving general purpose
register state has been added to the 'cpu_context' structure. All
assembler ensures that it does not use callee saved registers
(x19-x29). The C runtime preserves them across functions calls. Hence
EL3 code does not have to save and restore them explicitly.
Since the exception handling framework has undergone substantial change,
the changes have been kept in separate files to aid readability. These
files will replace the existing ones in subsequent patches.
Change-Id: Ice418686592990ff7a4260771e8d6676e6c8c5ef
This patch introduces the framework to enable registration and
initialisation of runtime services. PSCI is registered and initialised
as a runtime service. Handling of runtime service requests will be
implemented in subsequent patches.
Change-Id: Id21e7ddc5a33d42b7d6e455b41155fc5441a9547
This patch uses the context library to save and restore EL3 state on
the 'cpu_context' data structures allocated by PSCI for managing
non-secure state context on each cpu.
Change-Id: I19c1f26578204a7cd9e0a6c582ced0d97ee4cf80
This patch ensures that VBAR_EL3 points to the simple stack-less
'early_exceptions' when the C runtime stack is not correctly setup to
use the more complex 'runtime_exceptions'. It is initialised to
'runtime_exceptions' once this is done.
This patch also moves all exception vectors into a '.vectors' section
and modifies linker scripts to place all such sections together. This
will minimize space wastage from alignment restrictions.
Change-Id: I8c3e596ea3412c8bd582af9e8d622bb1cb2e049d
The modified implementation uses the IO abstraction rather than
making direct semi-hosting calls. The semi-hosting driver is now
registered for the FVP platform during initialisation of each boot
stage where it is used. Additionally, the FVP platform includes a
straightforward implementation of 'plat_get_image_source' which
provides a generic means for the 'load_image' function to determine
how to access the image data.
Change-Id: Ia34457b471dbee990c7b3c79de7aee4ceea51aa6
The psci implementation does not track target affinity level requests
specified during cpu_suspend calls correctly as per the following
example.
1. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0
2. Only the cpu0.cluster0 is powered down while cluster0 remains
powered up
3. cpu1.cluster0 calls cpu_off to power itself down to highest
possible affinity level
4. cluster0 will be powered off even though cpu0.cluster0 does not
allow cluster shutdown
This patch introduces reference counts at affinity levels > 0 to track
the number of cpus which want an affinity instance at level X to
remain powered up. This instance can be turned off only if its
reference count is 0. Cpus still undergo the normal state transitions
(ON, OFF, ON_PENDING, SUSPEND) but the higher levels can only be
either ON or OFF depending upon their reference count.
The above issue is thus fixed as follows:
1. cluster0's reference count is incremented by two when cpu0 and cpu1
are initially powered on.
2. cpu0.cluster0 calls cpu_suspend with the target affinity level as
0. This does not affect the cluster0 reference count.
3. Only the cpu0.cluster0 is powered down while cluster0 remains
powered up as it has a non-zero reference count.
4. cpu1.cluster0 call cpu_off to power itself down to highest possible
affinity level. This decrements the cluster0 reference count.
5. cluster0 is still not powered off since its reference count will at
least be 1 due to the restriction placed by cpu0.
Change-Id: I433dfe82b946f5f6985b1602c2de87800504f7a9
This patch adds support to save and restore the target affinity level
specified during a cpu_suspend psci call. This ensures that we
traverse only through the affinity levels that we originally intended
to after resuming from suspend.
Change-Id: I0900ae49a50b496da137cfec8f158da0397ec56c
The secure context saved and restored across a cpu_suspend operation
can be more than just the state of the secure system registers e.g. we
also need to save the affinity level till which the cpu is being
powered down. This patch creates a suspend_context data structure
which includes the system register context. This will allow other bits
to be saved and restored as well in subsequent patches.
Change-Id: I1c1f7d25497388b54b7d6ee4fab77e8c6a9992c4
This patch performs a major rework of the psci generic implementation
to achieve the following:
1. replace recursion with iteration where possible to aid code
readability e.g. affinity instance states are changed iteratively
instead of recursively.
2. acquire pointers to affinity instance nodes at the beginning of a
psci operation. All subsequent actions use these pointers instead
of calling psci_get_aff_map_node() repeatedly e.g. management of
locks has been abstracted under functions which use these pointers
to ensure correct ordering. Helper functions have been added to
create these abstractions.
3. assertions have been added to cpu level handlers to ensure correct
state transition
4. the affinity level extents specified to various functions have the
same meaning i.e. start level is always less than the end level.
Change-Id: If0508c3a7b20ea3ddda2a66128429382afc3dfc8
This patch:
1. removes a duplicate assertion to check that the only error
condition that can be returned while turning a cpu off is
PSCI_E_DENIED. Having this assertion after calling
psci_afflvl_off() is sufficient.
2. corrects some incorrect usage of 'its' vs 'it is'
3. removes some unwanted white spaces
Change-Id: Icf014e269b54f5be5ce0b9fbe6b41258e4ebf403
In the previous psci implementation, the psci_afflvl_power_on_finish()
function would run into an error condition if the value of the context
id parameter in the cpu_on and cpu_suspend psci calls was != 0. The
parameter was being restored as the return value of the affinity level
0 finisher function. A non zero context id would be treated as an
error condition. This would prevent successful wake up of the cpu from
a power down state. Also, the contents of the general purpose
registers were not being cleared upon return to the non-secure world
after a cpu power up. This could potentially allow the non-secure
world to view secure data.
This patch ensures that all general purpose registers are set to ~0
prior to the final eret that drops the execution to the non-secure
world. The context id is used to initialize the general purpose
register x0 prior to re-entry into the non-secure world and is no
longer restored as a function return value. A platform helper
(platform_get_stack()) has been introduced to facilitate this change.
Change-Id: I2454911ffd75705d6aa8609a5d250d9b26fa097c
- Add instructions for contributing to ARM Trusted Firmware.
- Update copyright text in all files to acknowledge contributors.
Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
- Check at link-time that bootloader images will fit in memory
at run time and that they won't overlap each other.
- Remove text and rodata orphan sections.
- Define new linker symbols to remove the need for platform setup
code to know the order of sections.
- Reduce the size of the raw binary images by cutting some sections
out of the disk image and allocating them at load time, whenever
possible.
- Rework alignment constraints on sections.
- Remove unused linker symbols.
- Homogenize linker symbols names across all BLs.
- Add some comments in the linker scripts.
Change-Id: I47a328af0ccc7c8ab47fcc0dc6e7dd26160610b9
Any asynchronous exception caused by the firmware should be handled
in the firmware itself. For this reason, unmask SError exceptions
(and Debug ones as well) on all boot paths. Also route external
abort and SError interrupts to EL3, otherwise they will target EL1.
Change-Id: I9c191d2d0dcfef85f265641c8460dfbb4d112092