So it updates each time a bootloader changes, not just when bl*_main.c
files are recompiled.
FixesARM-software/tf-issues#33
Change-Id: Ie8e1a7bd7e1913d2e96ac268606284f76af8c5ab
Signed-off-by: Jon Medhurst <tixy@linaro.org>
This change requires all platforms to now specify a list of source files
rather than object files.
New source files should preferably be specified by using the path as
well and we should add this in the future for all files so we can remove
use of vpath. This is desirable because vpath hides issues like the fact
that BL2 currently pulls in a BL1 file bl1/aarch64/early_exceptions.S
and if in the future we added bl2/aarch64/early_exceptions.S then it's
likely only one of the two version would be used for both bootloaders.
This change also removes the 'dump' build target and simply gets
bootloaders to always generate a dump file. At the same time the -x
option is added so the section headers and symbols table are listed.
FixesARM-software/tf-issues#11
Change-Id: Ie38f7be76fed95756c8576cf3f3ea3b7015a18dc
Signed-off-by: Jon Medhurst <tixy@linaro.org>
Make gicd_set_ipriorityr() actually write to the priority register.
Also correct callers of this function which want the highest priority
to use the value zero as this is the highest priority value according
to the ARM Generic Interrupt Controller Architecture Specification.
To make this easier to get right, we introduce defines for the lowest
and highest priorities for secure and non-secure interrupts.
FixesARM-software/tf-issues#21
Signed-off-by: Jon Medhurst <tixy@linaro.org>
bakery_lock_release() expects an mpidr as the first argument however
bakery_lock_release() is calling it with the 'entry' argument it has
calculated. Rather than fixing this to pass the mpidr value it would be
much more efficient to just replace the call with
assert(bakery->owner == entry)
As this leaves no remaining users of bakery_lock_held(), we might as
well delete it.
FixesARM-software/tf-issues#27
Signed-off-by: Jon Medhurst <tixy@linaro.org>
Update the readme.md and change-log.md with release information.
Also, remove the "Detailed changes since last release" section of
the change-log.md since the same information can be found in the
GIT commit messages. FixesARM-software/tf-issues#22.
Change-Id: I968cc8aaf588aa5c34ba8f1c12a5b797a46e04f5
Consolidate firmware-design.md and porting-guide.pm so
that recently added sections fit better with
pre-existing sections. Make the documentation more
consistent in use of terminology.
Change-Id: Id87050b096122fbd845189dc2fe1cd17c3003468
1. Add design information on EL3 runtime services and
Secure-EL1 Payload Dispatchers (SPD) to
firmware-design.md.
2. Create new EL3 runtime service writer's guide
(rt-svc-writers-guide.md) to ease creation of new
runtime services.
Change-Id: I670aeb5fc246e25c6e599a15139aac886a0074fd
Move the firmware design documentation out of user-guide.md
and into a new file - firmware-design.md. Reformat the
section headers.
Change-Id: I664815dd47011c7c1cf2202aa4472a8fd78ebb92
1. Update user-guide.md with the latest versions of dependent
components required by the tested configurations of ARM Trusted
Firmware. This includes the tested versions of Fixed Virtual
Platforms (FVPs), toolchain, EFI Development Kit 2(EDK2),
Linux kernel and Linux file system.
2. Remove the instructions to configure the Cortex Base FVP
with the legacy GICv2 memory map as this is no longer supported
since version 5.3 of the Base FVPs.
3. General tidyup of "Using the software" section.
Change-Id: If8264cd29036b59dc5ff435b5f8b1d072dd36ef0
The BL31 and BL2 linker scripts ended up having duplicate descriptions
for xlat_tables section. This patch removes those duplicate
descriptions.
Change-Id: Ibbdda0902c57fca5ea4e91e0baefa6df8f0a9bb1
The UART used to be initialised in bl1_platform_setup(). This is too
late because there are some calls to the assert() macro, which needs
to print some messages on the console, before that.
This patch moves the UART initialisation code to
bl1_early_platform_setup().
FixesARM-software/tf-issues#49
Change-Id: I98c83a803866372806d2a9c2e1ed80f2ef5b3bcc
At present, the firmware panics if a runtime service fails to
initialize. An earlier patch had implemented late binding for all
runtime service handlers.
With that in place, this patch allows the firmware to proceed even when
a service fails to initialize.
Change-Id: I6cf4de2cecea9719f4cd48272a77cf459b080d4e
At present SPD power management hooks and BL3-2 entry are implemented
using weak references. This would have the handlers bound and registered
with the core framework at build time, but leaves them dangling if a
service fails to initialize at runtime.
This patch replaces implementation by requiring runtime handlers to
register power management and deferred initialization hooks with the
core framework at runtime. The runtime services are to register the
hooks only as the last step, after having all states successfully
initialized.
Change-Id: Ibe788a2a381ef39aec1d4af5ba02376e67269782
This commit updates contributing.md to point to the ARM website
for downloading copies of the Contribution License Agreement (CLA).
It is no longer necessary to email ARM for these.
Change-Id: Iaf58680631a626f26827577709ac5471e3b84566
Commit 375f538a7 in Github accidentally removed the BL2 targets from the
Makefile help message. This patch reverts that change.
Change-Id: I825a9abe5b4ba0f15d02879dda1056912e2ad60c
Fixes issues #10:
https://github.com/ARM-software/tf-issues/issues/10
This patch changes all/most variables of type int to be size_t or long
to fix the sizing and alignment problems found when building with the
newer toolchains such as Linaro GCC 13.12 or later.
Change-Id: Idc9d48eb2ff9b8c5bbd5b227e6907263d1ea188b
Signed-off-by: Ryan Harkin <ryan.harkin@linaro.org>
At present the fip.bin depends on phony targets for BL images, resulting
in unconditional remake of fip.bin. Also the build messages doesn't
match with the rest of build system.
This patch modifies the fip.bin dependencies to the actual BL binary
images so that fip.bin is remade only when the component images are
rebuilt/modified. The build messages and FIP Makefile are modified to
match the style of rest of the build system.
Change-Id: I8dd08666ff766d106820a5b4b037c2161bcf140f
At present many recoverable failures are reported as errors. This patch
modifies all such failures to be reported as warnings instead.
Change-Id: I5141653c82498defcada9b90fdf7498ba496b2f2
This patch reworks the service provided by the TSP to perform common
arithmetic operations on a set of arguments provided by the non-secure
world. For a addition, division, subtraction & multiplication operation
requested on two arguments in x0 and x1 the steps are:
1. TSPD saves the non-secure context and passes the operation and its
arguments to the TSP.
2. TSP asks the TSPD to return the same arguments once again. This
exercises an additional SMC path.
3. TSP now has two copies of both x0 and x1. It performs the operation
on the corresponding copies i.e. in case of addition it returns x0+x0
and x1+x1.
4. TSPD receives the result, saves the secure context, restores the
non-secure context and passes the result back to the non-secure
client.
Change-Id: I6eebfa2ae0a6f28b1d2e11a31f575c7a4b96724b
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This patch implements a set of handlers in the SPD which are called by
the PSCI runtime service upon receiving a power management
operation. These handlers in turn pass control to the Secure Payload
image if required before returning control to PSCI. This ensures that
the Secure Payload has complete visibility of all power transitions in
the system and can prepare accordingly.
Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
This patch adds the TSPD service which is responsible for managing
communication between the non-secure state and the Test Secure Payload
(TSP) executing in S-EL1.
The TSPD does the following:
1. Determines the location of the TSP (BL3-2) image and passes control
to it for initialization. This is done by exporting the 'bl32_init()'
function.
2. Receives a structure containing the various entry points into the TSP
image as a response to being initialized. The TSPD uses this
information to determine how the TSP should be entered depending on
the type of operation.
3. Implements a synchronous mechanism for entering into and returning
from the TSP image. This mechanism saves the current C runtime
context on top of the current stack and jumps to the TSP through an
ERET instruction. The TSP issues an SMC to indicate completion of the
previous request. The TSPD restores the saved C runtime context and
resumes TSP execution.
This patch also introduces a Make variable 'SPD' to choose the specific
SPD to include in the build. By default, no SPDs are included in the
build.
Change-Id: I124da5695cdc510999b859a1bf007f4d049e04f3
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
If there is a request to open a file from FIP, and that file is not
found, the driver fails to reset the offset address. This causes
subsequent file loads to fail.
This patch resets the offset address to zero if a file is not found so
that subsequent file loads are unaffected.
Change-Id: I16418e35f92fb7c85fb12e2acc071990520cdef8
This patch adds a simple TSP as the BL3-2 image. The secure payload
executes in S-EL1. It paves the way for the addition of the TSP
dispatcher runtime service to BL3-1. The TSP and the dispatcher service
will serve as an example of the runtime firmware's ability to toggle
execution between the non-secure and secure states in response to SMC
request from the non-secure state. The TSP will be replaced by a
Trusted OS in a real system.
The TSP also exports a set of handlers which should be called in
response to a PSCI power management event e.g a cpu being suspended or
turned off. For now it runs out of Secure DRAM on the ARM FVP port and
will be moved to Secure SRAM later. The default translation table setup
code assumes that the caller is executing out of secure SRAM. Hence the
TSP exports its own translation table setup function.
The TSP only services Fast SMCs, is non-reentrant and non-interruptible.
It does arithmetic operations on two sets of four operands, one set
supplied by the non-secure client, and the other supplied by the TSP
dispatcher in EL3. It returns the result according to the Secure Monitor
Calling convention standard.
This TSP has two functional entry points:
- An initial, one-time entry point through which the TSP is initialized
and prepares for receiving further requests from secure
monitor/dispatcher
- A fast SMC service entry point through which the TSP dispatcher
requests secure services on behalf of the non-secure client
Change-Id: I24377df53399307e2560a025eb2c82ce98ab3931
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This patch creates a 'services' directory and moves the PSCI under
it. Other runtime services e.g. the Secure Payload Dispatcher service
will be placed under the same directory in the future.
Also fixes issue ARM-software/tf-issues#12
Change-Id: I187f83dcb660b728f82155d91882e961d2255068
This patch adds the ability to specify the base address of a UART
device for initialising the console. This allows a boot loader stage
to use a different UART device from UART0 (default) for the console.
Change-Id: Ie60b927389ae26085cfc90d22a564ff83ba62955
This patch factors out the ARM FVP specific code to create MMU
translation tables so that it is possible for a boot loader stage to
create a different set of tables instead of using the default ones.
The default translation tables are created with the assumption that
the calling boot loader stage executes out of secure SRAM. This might
not be true for the BL3_2 stage in the future.
A boot loader stage can define the `fill_xlation_tables()` function as
per its requirements. It returns a reference to the level 1
translation table which is used by the common platform code to setup
the TTBR_EL3.
This patch is a temporary solution before a larger rework of
translation table creation logic is introduced.
Change-Id: I09a075d5da16822ee32a411a9dbe284718fb4ff6
This patch adds the following support to the BL3-1 stage:
1. BL3-1 allows runtime services to specify and determine the security
state of the next image after BL3-1. This has been done by adding
the `bl31_set_next_image_type()` & `bl31_get_next_image_type()`
apis. The default security state is non-secure. The platform api
`bl31_get_next_image_info()` has been modified to let the platform
decide which is the next image in the desired security state.
2. BL3-1 exports the `bl31_prepare_next_image_entry()` function to
program entry into the target security state. It uses the apis
introduced in 1. to do so.
3. BL3-1 reads the information populated by BL2 about the BL3-2 image
into its internal data structures.
4. BL3-1 introduces a weakly defined reference `bl32_init()` to allow
initialisation of a BL3-2 image. A runtime service like the Secure
payload dispatcher will define this function if present.
Change-Id: Icc46dcdb9e475ce6575dd3f9a5dc7a48a83d21d1
This patch adds support for loading a BL3-2 image in BL2. In case a
BL3-2 image is found, it also passes information to BL3-1 about where it
is located and the extents of memory available to it. Information about
memory extents is populated by platform specific code.
The documentation has also been updated to reflect the above changes.
Change-Id: I526b2efb80babebab1318f2b02e319a86d6758b0
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This patch reworks BL2 to BL3-1 hand over interface by introducing a
composite structure (bl31_args) that holds the superset of information
that needs to be passed from BL2 to BL3-1.
- The extents of secure memory available to BL3-1
- The extents of memory available to BL3-2 (not yet implemented) and
BL3-3
- Information to execute BL3-2 (not yet implemented) and BL3-3 images
This patch also introduces a new platform API (bl2_get_bl31_args_ptr)
that needs to be implemented by the platform code to export reference to
bl31_args structure which has been allocated in platform-defined memory.
The platform will initialize the extents of memory available to BL3-3
during early platform setup in bl31_args structure. This obviates the
need for bl2_get_ns_mem_layout platform API.
BL2 calls the bl2_get_bl31_args_ptr function to get a reference to
bl31_args structure. It uses the 'bl33_meminfo' field of this structure
to load the BL3-3 image. It sets the entry point information for the
BL3-3 image in the 'bl33_image_info' field of this structure. The
reference to this structure is passed to the BL3-1 image.
Also fixes issue ARM-software/tf-issues#25
Change-Id: Ic36426196dd5ebf89e60ff42643bed01b3500517
This patch adds guards so that an exception vector exceeding 32
instructions will generate a compile-time error. This keeps the
exception handlers in check from spilling over.
Change-Id: I7aa56dd0071a333664e2814c656d3896032046fe
This patch increases coherent stack size for both debug and release
builds in order to accommodate stack-heavy printf() and extended EL3
functionality
Change-Id: I30ef30530a01517a97e63d703873374828c09f20
This patch uses the reworked exception handling support to handle
runtime service requests through SMCs following the SMC calling
convention. This is a giant commit since all the changes are
inter-related. It does the following:
1. Replace the old exception handling mechanism with the new one
2. Enforce that SP_EL0 is used C runtime stacks.
3. Ensures that the cold and warm boot paths use the 'cpu_context'
structure to program an ERET into the next lower EL.
4. Ensures that SP_EL3 always points to the next 'cpu_context'
structure prior to an ERET into the next lower EL
5. Introduces a PSCI SMC handler which completes the use of PSCI as a
runtime service
Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
This patch introduces the reworked exception handling logic which lays
the foundation for accessing runtime services in later patches. The
type of an exception has a greater say in the way it is
handled. SP_EL3 is used as the stack pointer for:
1. Determining the type of exception and handling the unexpected ones
on the exception stack
2. Saving and restoring the essential general purpose and system
register state after exception entry and prior to exception exit.
SP_EL0 is used as the stack pointer for handling runtime service
requests e.g. SMCs. A new structure for preserving general purpose
register state has been added to the 'cpu_context' structure. All
assembler ensures that it does not use callee saved registers
(x19-x29). The C runtime preserves them across functions calls. Hence
EL3 code does not have to save and restore them explicitly.
Since the exception handling framework has undergone substantial change,
the changes have been kept in separate files to aid readability. These
files will replace the existing ones in subsequent patches.
Change-Id: Ice418686592990ff7a4260771e8d6676e6c8c5ef
This patch introduces the framework to enable registration and
initialisation of runtime services. PSCI is registered and initialised
as a runtime service. Handling of runtime service requests will be
implemented in subsequent patches.
Change-Id: Id21e7ddc5a33d42b7d6e455b41155fc5441a9547
This patch uses the context library to save and restore EL3 state on
the 'cpu_context' data structures allocated by PSCI for managing
non-secure state context on each cpu.
Change-Id: I19c1f26578204a7cd9e0a6c582ced0d97ee4cf80
This patch adds support for a cpu context management library. This
library will be used to:
1. Share pointers to secure and non-secure state cpu contexts between
runtime services e.g. PSCI and Secure Payload Dispatcher services
2. Set SP_EL3 to a context structure which will be used for
programming an ERET into a lower EL
3. Provide wrapper functions to save and restore EL3 & EL1
state. These functions will in turn use the helper functions in
context.S
Change-Id: I655eeef83dcd2a0c6f2eb2ac23efab866ac83ca0
This patch introduces functions for saving and restoring shared system
registers between secure and non-secure EL1 exception levels, VFP
registers and essential EL3 system register and other state. It also
defines the 'cpu_context' data structure which will used for saving and
restoring execution context for a given security state. These functions
will allow runtime services like PSCI and Secure payload dispatcher to
implement logic for switching between the secure and non-secure states.
The save and restore functions follow AArch64 PCS and only use
caller-saved temporary registers.
Change-Id: I8ee3aaa061d3caaedb28ae2c5becb9a206b6fd74
This patch ensures that VBAR_EL3 points to the simple stack-less
'early_exceptions' when the C runtime stack is not correctly setup to
use the more complex 'runtime_exceptions'. It is initialised to
'runtime_exceptions' once this is done.
This patch also moves all exception vectors into a '.vectors' section
and modifies linker scripts to place all such sections together. This
will minimize space wastage from alignment restrictions.
Change-Id: I8c3e596ea3412c8bd582af9e8d622bb1cb2e049d
The SynchronousExceptionA64 vector has gone beyond the 32-instruction
limit for individual exception vector. This patch splits and relocates
the exception handler so that it fits into the 32-instruction window.
Change-Id: Ic60c4fc3f09a1cb071d63ff0e58353ecaecbb62f
This patch moves the translation tables into their own section. This
saves space that would otherwise have been lost in padding due to page
table alignment constraints. The BL31 and BL32 bases have been
consequently adjusted.
Change-Id: Ibd65ae8a5ce4c4ea9a71a794c95bbff40dc63e65
The Firmware Image Package (FIP) driver allows for data to be loaded
from a FIP on platform storage. The FVP supports loading bootloader
images from a FIP located in NOR FLASH.
The implemented FVP policy states that bootloader images will be
loaded from a FIP in NOR FLASH if available and fall back to loading
individual images from semi-hosting.
NOTE:
- BL3-3(e.g. UEFI) is loaded into DRAM and needs to be configured
to run from the BL33_BASE address. This is currently set to
DRAM_BASE+128MB for the FVP.
Change-Id: I2e4821748e3376b5f9e467cf3ec09509e43579a0
This tool can be used to create a Firmware Image Packages (FIP). These
FIPs store a combined set of firmware images with a Table of Contents
(ToC) that can be loaded by the firmware from platform storage.
- Add uuid.h from FreeBSD.
- Use symbolic links to shared headers otherwise unwanted headers and
definitions are pulled in.
- A FIP is created as part of the default FVP build.
- A BL3-3 image(e.g. UEFI) must be provided.
Change-Id: Ib73feee181df2dba68bf6abec115a83cfa5e26cb
The modified implementation uses the IO abstraction rather than
making direct semi-hosting calls. The semi-hosting driver is now
registered for the FVP platform during initialisation of each boot
stage where it is used. Additionally, the FVP platform includes a
straightforward implementation of 'plat_get_image_source' which
provides a generic means for the 'load_image' function to determine
how to access the image data.
Change-Id: Ia34457b471dbee990c7b3c79de7aee4ceea51aa6
This is intended primarily for use as a storage abstraction.
It allows operations such as image-loading to be implemented
in a platform-independent fashion. Each platform registers
a set of IO drivers during initialisation. The platform must
also provide a function that will return a device and a specifier
that can be used to access specified content.
Clients of the API will primarily use device and entity handles.
The term "entity" is deliberately vague, to allow for different
representations of content accessed using different types of
specifier, but will often be interpreted as a "file" where the
specifier will normally be its path.
This commit builds, but is intended to be paired with a sample
implementation of "load_image" using a semi-hosting driver on FVP.
Change-Id: Id3b52f1c0eb9ce76b44b99fc6b6460803668cc86