Since commit 804040d106, the Juno port has moved from per-CPU mailboxes
to a single shared one. This patch updates an out-dated reference to
the former per-CPU mailboxes mechanism in the Firmware Design.
Change-Id: I355b54156b1ace1b3df4c4416e1e8625211677fc
This patch fixes a couple of issues in the "CPU specific operations
framework" section in the Firmware Design document.
* Fix broken link to the CPU Specific Build Macros document.
* Fix the path to the cortex_a53.S file.
* Fix power levels terminology.
Change-Id: Ib610791eaba13dab2823b7699bb63534bcd1c8fb
This patch adds design documentation for the Firmware Update (FWU)
feature in `firmware-update.md`. It provides an overview of FWU,
describes the BL1 SMC interface, and includes diagrams showing
an example FWU boot flow and the FWU state machine.
This patch also updates the existing TF documents where needed:
* `porting-guide.md`
* `user-guide.md`
* `firmware-design.md`
* `rt-svc-writers-guide.md`
* `trusted_board_boot.md`
Change-Id: Ie6de31544429b18f01327bd763175e218299a4ce
Co-Authored-By: Dan Handley <dan.handley@arm.com>
This patch introduces a new document presenting the ARM Trusted
Firmware Reset Design. It shows the reset code flow, lists the
different build options that affect it, in which case to use them
and what their exact effect is.
The section about using BL31 entrypoint as the reset address has
been moved from the general firmware design document to this one.
It's also been improved to explain why the FVP port supports the
RESET_TO_BL31 configuration, even though the reset vector address
can't be programmed dynamically.
This document includes some images, which have been generated using
Dia version 0.97.2. This tool can be obtained from:
https://wiki.gnome.org/Apps/Dia/Download
This patch provides:
- the image files describing the different reset flow diagrams;
- the source '.dia' file;
- a script automating the generation of the images from the '.dia'
file.
Note that the 2 latter files are not actually needed for the document
and are provided for convenience only, in case the reset images need
to be modified.
Change-Id: Ib6302e8209d418a5b31c4e85e55fd9e83caf2ca2
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:
https://github.com/ARM-software/arm-trusted-firmware/wiki
Changes apply to output messages, comments and documentation.
non-ARM platform files have been left unmodified.
Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
This patch replaces all references to the SCP Firmware (BL0, BL30,
BL3-0, bl30) with the image terminology detailed in the TF wiki
(https://github.com/ARM-software/arm-trusted-firmware/wiki):
BL0 --> SCP_BL1
BL30, BL3-0 --> SCP_BL2
bl30 --> scp_bl2
This change affects code, documentation, build system, tools and
platform ports that load SCP firmware. ARM plaforms have been
updated to the new porting API.
IMPORTANT: build option to specify the SCP FW image has changed:
BL30 --> SCP_BL2
IMPORTANT: This patch breaks compatibility for platforms that use BL2
to load SCP firmware. Affected platforms must be updated as follows:
BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
BL30_BASE --> SCP_BL2_BASE
bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()
Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
This patch unifies the bakery lock api's across coherent and normal
memory implementation of locks by using same data type `bakery_lock_t`
and similar arguments to functions.
A separate section `bakery_lock` has been created and used to allocate
memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are
allocated in normal memory, each lock for a core has to spread
across multiple cache lines. By using the total size allocated in a
separate cache line for a single core at compile time, the memory for
other core locks is allocated at link time by multiplying the single
core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock
algorithm now uses lock address instead of the `id` in the per_cpu_data.
For locks allocated in coherent memory, it moves locks from
tzfw_coherent_memory to bakery_lock section.
The bakery locks are allocated as part of bss or in coherent memory
depending on usage of coherent memory. Both these regions are
initialised to zero as part of run_time_init before locks are used.
Hence, bakery_lock_init() is made an empty function as the lock memory
is already initialised to zero.
The above design lead to the removal of psci bakery locks from
non_cpu_power_pd_node to psci_locks.
NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED.
THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY
LOCKS IN NORMAL MEMORY.
Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
ARM TF configures all interrupts as non-secure except those which
are present in irq_sec_array. This patch updates the irq_sec_array
with the missing secure interrupts for ARM platforms.
It also updates the documentation to be inline with the latest
implementation.
FixesARM-software/tf-issues#312
Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
This patch adds support for SYSTEM_SUSPEND API as mentioned in the PSCI 1.0
specification. This API, on being invoked on the last running core on a
supported platform, will put the system into a low power mode with memory
retention.
The psci_afflvl_suspend() internal API has been reused as most of the actions
to suspend a system are the same as invoking the PSCI CPU_SUSPEND API with the
target affinity level as 'system'. This API needs the 'power state' parameter
for the target low power state. This parameter is not passed by the caller of
the SYSTEM_SUSPEND API. Hence, the platform needs to implement the
get_sys_suspend_power_state() platform function to provide this information.
Also, the platform also needs to add support for suspending the system to the
existing 'plat_pm_ops' functions: affinst_suspend() and
affinst_suspend_finish().
Change-Id: Ib6bf10809cb4e9b92f463755608889aedd83cef5
The attempt to run the CPU reset code as soon as possible after reset
results in highly complex conditional code relating to the
RESET_TO_BL31 option.
This patch relaxes this requirement a little. In the BL1, BL3-1 and
PSCI entrypoints code, the sequence of operations is now as follows:
1) Detect whether it is a cold or warm boot;
2) For cold boot, detect whether it is the primary or a secondary
CPU. This is needed to handle multiple CPUs entering cold reset
simultaneously;
3) Run the CPU init code.
This patch also abstracts the EL3 registers initialisation done by
the BL1, BL3-1 and PSCI entrypoints into common code.
This improves code re-use and consolidates the code flows for
different types of systems.
NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO
NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE
FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION.
OTHERWISE, SECONDARY CPUS WILL PANIC.
Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
This patch removes the FIRST_RESET_HANDLER_CALL build flag and its
use in ARM development platforms. If a different reset handling
behavior is required between the first and subsequent invocations
of the reset handling code, this should be detected at runtime.
On Juno, the platform reset handler is now always compiled in.
This means it is now executed twice on the cold boot path, first in
BL1 then in BL3-1, and it has the same behavior in both cases. It is
also executed twice on the warm boot path, first in BL1 then in the
PSCI entrypoint code.
Also update the documentation to reflect this change.
NOTE: THIS PATCH MAY FORCE PLATFORM PORTS THAT USE THE
FIRST_RESET_HANDLER_CALL BUILD OPTION TO FIX THEIR RESET HANDLER.
Change-Id: Ie5c17dbbd0932f5fa3b446efc6e590798a5beae2
On ARM standard platforms, snoop and DVM requests used to be enabled
for the primary CPU's cluster only in the first EL3 bootloader.
In other words, if the platform reset into BL1 then CCI coherency
would be enabled by BL1 only, and not by BL3-1 again.
However, this doesn't cater for platforms that use BL3-1 along with
a non-TF ROM bootloader that doesn't enable snoop and DVM requests.
In this case, CCI coherency is never enabled.
This patch modifies the function bl31_early_platform_setup() on
ARM standard platforms so that it always enables snoop and DVM
requests regardless of whether earlier bootloader stages have
already done it. There is no harm in executing this code twice.
ARM Trusted Firmware Design document updated accordingly.
Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
Update the User Guide, Porting Guide and Firmware Design documents
to align them with the recent changes made to the FVP and Juno
platform ports.
Also fix some other historical inaccuracies.
Change-Id: I37aba4805f9044b1a047996d3e396c75f4a09176
Final updates to readme.md and change-log.md for ARM Trusted Firmware version
1.1. Also increment the version in the Makefile.
Change-Id: Ib001a6ec9a9c570985841d06f0ff80ed76c2996b
The CPU specific reset handlers no longer have the freedom
of using any general purpose register because it is being invoked
by the BL3-1 entry point in addition to BL1. The Cortex-A57 CPU
specific reset handler was overwriting x20 register which was being
used by the BL3-1 entry point to save the entry point information.
This patch fixes this bug by reworking the register allocation in the
Cortex-A57 reset handler to avoid using x20. The patch also
explicitly mentions the register clobber list for each of the
callee functions invoked by the reset handler
Change-Id: I28fcff8e742aeed883eaec8f6c4ee2bd3fce30df
This patch adds support to call the reset_handler() function in BL3-1 in the
cold and warm boot paths when another Boot ROM reset_handler() has already run.
This means the BL1 and BL3-1 versions of the CPU and platform specific reset
handlers may execute different code to each other. This enables a developer to
perform additional actions or undo actions already performed during the first
call of the reset handlers e.g. apply additional errata workarounds.
Typically, the reset handler will be first called from the BL1 Boot ROM. Any
additional functionality can be added to the reset handler when it is called
from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used
to identify whether this is the first version of the reset handler code to be
executed or an overridden version of the code.
The Cortex-A57 errata workarounds are applied only if they have not already been
applied.
FixesARM-software/tf-issue#275
Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
This patch:
* Bumps the PSCI VERSION to 1.0. This means that
the PSCI_VERSION API will now return the value 0x00010000
to indicate the version as 1.0. The firmware remains
compatible with PSCI v0.2 clients.
* The firmware design guide is updated to document the
APIs supported by the Trusted Firmware generic code.
* The FVP Device Tree Sources (dts) and Blobs(dtb) are also
updated to add "psci-1.0" and "psci-0.2" to the list of
compatible PSCI versions.
Change-Id: Iafc2f549c92651dcd65d7e24a8aae35790d00f8a
This patch allows the secure payload (BL3-2) to be loaded in the
DRAM region secured by the TrustZone controller (top 16 MB of DRAM1).
The location of BL3-2 can be selected at build time by setting the
build flag FVP_TSP_RAM_LOCATION to one of the following options:
- 'tsram' : Trusted SRAM (this is the default option)
- 'tdram' : Trusted DRAM
- 'dram' : Secure region in DRAM1 (top 16MB configured by the
TrustZone controller)
The number of MMU tables in BL3-2 depends on its location in
memory: 3 in case it is loaded in DRAM, 2 otherwise.
Documentation updated accordingly.
FixesARM-software/tf-issues#212
Change-Id: I371eef3a4159f06a0c9e3c6c1f4c905b2f93803a
This patch extends the build option `USE_COHERENT_MEMORY` to
conditionally remove coherent memory from the memory maps of
all boot loader stages. The patch also adds necessary
documentation for coherent memory removal in firmware-design,
porting and user guides.
FixesARM-Software/tf-issues#106
Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
This patch allows the BL3-1 NOBITS section to overlap the BL1 R/W
section since the former will always be used after the latter.
Similarly, the BL3-2 NOBITS section can overlay the BL2 image
when BL3-2 is loaded in Trusted SRAM.
Due to the current size of the images, there is no actual overlap.
Nevertheless, this reorganization may help to optimise the Trusted
SRAM usage when the images size grows.
Note that because BL3-1 NOBITS section is allowed to overlap the
BL1 R/W section, BL1 global variables will remain valid only until
execution reaches the BL3-1 entry point during a cold boot.
Documentation updated accordingly.
FixesARM-software/tf-issues#254
Change-Id: Id538f4d1c7f1f7858108280fd7b97e138572b879
This patch optimizes the Cortex-A57 cluster power down sequence by not
flushing the Level1 data cache. The L1 data cache and the L2 unified
cache are inclusive. A flush of the L2 by set/way flushes any dirty
lines from the L1 as well. This is a known safe deviation from the
Cortex-A57 TRM defined power down sequence. This optimization can be
enabled by the platform through the 'SKIP_A57_L1_FLUSH_PWR_DWN' build
flag. Each Cortex-A57 based platform must make its own decision on
whether to use the optimization.
This patch also renames the cpu-errata-workarounds.md to
cpu-specific-build-macros.md as this facilitates documentation
of both CPU Specific errata and CPU Specific Optimization
build macros.
Change-Id: I299b9fe79e9a7e08e8a0dffb7d345f9a00a71480
This patch deprecates the build option to relocate the shared data
into Trusted DRAM in FVP. After this change, shared data is always
located at the base of Trusted SRAM. This reduces the complexity
of the memory map and the number of combinations in the build
options.
FixesARM-software/tf-issues#257
Change-Id: I68426472567b9d8c6d22d8884cb816f6b61bcbd3
This patch configures the TrustZone Controller in Juno to split
the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure
regions:
- Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are
used by the SCP for DDR retraining
- Non-Secure DDR-DRAM: remaining DRAM starting at base address
Build option PLAT_TSP_LOCATION selects the location of the secure
payload (BL3-2):
- 'tsram' : Trusted SRAM (default option)
- 'dram' : Secure region in the DDR-DRAM (set by the TrustZone
controller)
The MMU memory map has been updated to give BL2 permission to load
BL3-2 into the DDR-DRAM secure region.
FixesARM-software/tf-issues#233
Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
This patch adds support for supplying pre-built BL binaries for BL2,
BL3-1 and BL3-2 during trusted firmware build. Specifying BLx = <path_to_BLx>
in the build command line, where 'x' is any one of BL2, BL3-1 or BL3-2, will
skip building that BL stage from source and include the specified binary in
final fip image.
This patch also makes BL3-3 binary for FIP optional depending on the
value of 'NEED_BL33' flag which is defined by the platform.
FixesARM-software/tf-issues#244FixesARM-software/tf-issues#245
Change-Id: I3ebe1d4901f8b857e8bb51372290978a3323bfe7
This patch gathers miscellaneous minor fixes to the documentation, and comments
in the source code.
Change-Id: I631e3dda5abafa2d90f464edaee069a1e58b751b
Co-Authored-By: Soby Mathew <soby.mathew@arm.com>
Co-Authored-By: Dan Handley <dan.handley@arm.com>
This patch reorganizes the firmware design guide to add information about the
port of the ARM Trusted Firmware to the Juno ARM development platform.
Change-Id: I0b80e2e7a35ccad1af2e971506cfb7fe505f8b84
This patch adds documentation for CPU specific abstraction in the firmware-
design.md and adds a new document cpu-errata-workarounds.md to describe
the cpu errata workaround build flags.
Change-Id: Ia08c2fec0b868a0a107d0264e87a60182797a1bd
This patch groups the current contents of the Trusted DRAM region at
address 0x00_0600_0000 (entrypoint mailboxes and BL3-1 parameters) in
a single shared memory area that may be allocated to Trusted SRAM
(default) or Trusted DRAM at build time by setting the
FVP_SHARED_DATA_LOCATION make variable. The size of this shared
memory is 4096 bytes.
The combination 'Shared data in Trusted SRAM + TSP in Trusted DRAM'
is not currently supported due to restrictions in the maximum number
of mmu tables that can be created.
Documentation has been updated to reflect these changes.
FixesARM-software/tf-issues#100
Change-Id: I26ff04d33ce4cacf8d770d1a1e24132b4fc53ff0
This patch defines a compile time macro for each boot loader stage
which allows compilation of code only for a specific stage.
Change-Id: I3a4068404cd3dc26d652556ca9ca7afea8dd28ef
This patch adds support for BL3-2 initialization by asynchronous
method where BL3-1 transfers control to BL3-2 using world switch.
After BL3-2 initialization, it transfers control to BL3-3 via SPD
service handler. The SPD service handler initializes the CPU context
to BL3-3 entrypoint depending on the return function indentifier from
TSP initialization.
FixesARM-software/TF-issues#184
Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
Update the "Memory layout on FVP platforms" section in the Firmware
Design document to reflect the overlaying of BL1 and BL2 images
by BL3-1 and BL3-2.
Also update the Porting Guide document to mention the
BL31_PROGBITS_LIMIT and BL32_PROGBITS_LIMIT constants.
Change-Id: I0b23dae5b5b4490a01be7ff7aa80567cff34bda8
This patch adds documentation that describes the design of the Interrupt
management framework in the ARM Trusted Firmware. The porting-guide.md has also
been updated to describe the interface that should be implemented by each
platform to support this framework.
Change-Id: I3eda48e5c9456e6a9516956bee16a29e366633b7
Co-Authored-By: Soby Mathew <soby.mathew@arm.com>
Update documentation with BL3-1 hardening interface
changes and for using BL3-1 as a reset vector feature
Change-Id: Iafdd05e7a8e66503409f2acc934372efef5bc51b
This patch modifies and adds to the existing documentation
for the crash reporting implementation in BL3-1.
Change-Id: I2cfbfeeeb64996ec7d19a9ddf95295482899b4bd
Rework the "Memory layout on FVP platforms" section in the Firmware
Design document. Add information about where the TSP image fits
in the memory layout when present.
Add documentation for the base addresses of each bootloader image
in the porting guide.
Change-Id: I4afb2605e008a1cb28c44a697804f2cb6bb4c9aa
BL3-1 architecture setup code programs the system counter frequency
into the CNTFRQ_EL0 register. This frequency is defined by the
platform, though. This patch introduces a new platform hook that
the architecture setup code can call to retrieve this information.
In the ARM FVP port, this returns the first entry of the frequency
modes table from the memory mapped generic timer.
All system counter setup code has been removed from BL1 as some
platforms may not have initialized the system counters at this stage.
The platform specific settings done exclusively in BL1 have been moved
to BL3-1. In the ARM FVP port, this consists in enabling and
initializing the System level generic timer. Also, the frequency change
request in the counter control register has been set to 0 to make it
explicit it's using the base frequency. The CNTCR_FCREQ() macro has been
fixed in this context to give an entry number rather than a bitmask.
In future, when support for firmware update is implemented, there
is a case where BL1 platform specific code will need to program
the counter frequency. This should be implemented at that time.
This patch also updates the relevant documentation.
It properly fixesARM-software/tf-issues#24
Change-Id: If95639b279f75d66ac0576c48a6614b5ccb0e84b
This reverts commit 1c297bf015
because it introduced a bug: the CNTFRQ_EL0 register was no
longer programmed by all CPUs. bl31_platform_setup() function
is invoked only in the cold boot path and consequently only
on the primary cpu.
A subsequent commit will correctly implement the necessary changes
to the counter frequency setup code.
FixesARM-software/tf-issues#125
Conflicts:
docs/firmware-design.md
plat/fvp/bl31_plat_setup.c
Change-Id: Ib584ad7ed069707ac04cf86717f836136ad3ab54
This patch reworks the console driver to ensure that each bootloader stage
initializes it independently. As a result, both BL3-1 and BL2 platform code
now calls console_init() instead of relying on BL1 to perform console setup
FixesARM-software/tf-issues#120
Change-Id: Ic4d66e0375e40a2fc7434afcabc8bbb4715c14ab
At present, bl1_arch_setup() and bl31_arch_setup() program the counter
frequency using a value from the memory mapped generic timer. The
generic timer however is not necessarily present on all ARM systems
(although it is architected to be present on all server systems).
This patch moves the timer setup to platform-specific code and updates
the relevant documentation. Also, CNTR.FCREQ is set as the specification
requires the bit corresponding to the counter's frequency to be set when
enabling. Since we intend to use the base frequency, set bit 8.
FixesARM-software/tf-issues#24
Change-Id: I32c52cf882253e01f49056f47c58c23e6f422652
Consolidate firmware-design.md and porting-guide.pm so
that recently added sections fit better with
pre-existing sections. Make the documentation more
consistent in use of terminology.
Change-Id: Id87050b096122fbd845189dc2fe1cd17c3003468
1. Add design information on EL3 runtime services and
Secure-EL1 Payload Dispatchers (SPD) to
firmware-design.md.
2. Create new EL3 runtime service writer's guide
(rt-svc-writers-guide.md) to ease creation of new
runtime services.
Change-Id: I670aeb5fc246e25c6e599a15139aac886a0074fd
Move the firmware design documentation out of user-guide.md
and into a new file - firmware-design.md. Reformat the
section headers.
Change-Id: I664815dd47011c7c1cf2202aa4472a8fd78ebb92
1. Update user-guide.md with the latest versions of dependent
components required by the tested configurations of ARM Trusted
Firmware. This includes the tested versions of Fixed Virtual
Platforms (FVPs), toolchain, EFI Development Kit 2(EDK2),
Linux kernel and Linux file system.
2. Remove the instructions to configure the Cortex Base FVP
with the legacy GICv2 memory map as this is no longer supported
since version 5.3 of the Base FVPs.
3. General tidyup of "Using the software" section.
Change-Id: If8264cd29036b59dc5ff435b5f8b1d072dd36ef0
This patch adds the following support to the BL3-1 stage:
1. BL3-1 allows runtime services to specify and determine the security
state of the next image after BL3-1. This has been done by adding
the `bl31_set_next_image_type()` & `bl31_get_next_image_type()`
apis. The default security state is non-secure. The platform api
`bl31_get_next_image_info()` has been modified to let the platform
decide which is the next image in the desired security state.
2. BL3-1 exports the `bl31_prepare_next_image_entry()` function to
program entry into the target security state. It uses the apis
introduced in 1. to do so.
3. BL3-1 reads the information populated by BL2 about the BL3-2 image
into its internal data structures.
4. BL3-1 introduces a weakly defined reference `bl32_init()` to allow
initialisation of a BL3-2 image. A runtime service like the Secure
payload dispatcher will define this function if present.
Change-Id: Icc46dcdb9e475ce6575dd3f9a5dc7a48a83d21d1