Cortex-A510 erratum 2684597 is a Cat B erratum that applies to revisions
r0p0, r0p1, r0p2, r0p3, r1p0, r1p1 and r1p2. It is fixed in r1p3. The
workaround is to execute a TSB CSYNC and DSB before executing WFI for
power down.
SDEN can be found here:
https://developer.arm.com/documentation/SDEN1873361/latesthttps://developer.arm.com/documentation/SDEN1873351/latest
Change-Id: Ic0b24b600bc013eb59c797401fbdc9bda8058d6d
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
A processing element should never return from a wfi, however, due to a
hardware bug, certain CPUs may wake up because of an external event.
This patch tightens the behaviour of the common power down sequence, it
ensures the routine never returns by entering a wfi loop at its end. It
aligns with the behaviour of the platform implementations.
Change-Id: I36d8b0c64eccb71035bf164b4cd658d66ed7beb4
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
Enforce full include path for includes. Deprecate old paths.
The following folders inside include/lib have been left unchanged:
- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}
The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).
For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").
This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.
Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.
Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
During cold boot, the initial translation tables are created with data
caches disabled, so all modifications go to memory directly. After the
MMU is enabled and data cache is enabled, any modification to the tables
goes to data cache, and eventually may get flushed to memory.
If CPU0 modifies the tables while CPU1 is off, CPU0 will have the
modified tables in its data cache. When CPU1 is powered on, the MMU is
enabled, then it enables coherency, and then it enables the data cache.
Until this is done, CPU1 isn't in coherency, and the translation tables
it sees can be outdated if CPU0 still has some modified entries in its
data cache.
This can be a problem in some cases. For example, the warm boot code
uses only the tables mapped during cold boot, which don't normally
change. However, if they are modified (and a RO page is made RW, or a XN
page is made executable) the CPU will see the old attributes and crash
when it tries to access it.
This doesn't happen in systems with HW_ASSISTED_COHERENCY or
WARMBOOT_ENABLE_DCACHE_EARLY. In these systems, the data cache is
enabled at the same time as the MMU. As soon as this happens, the CPU is
in coherency.
There was an attempt of a fix in psci_helpers.S, but it didn't solve the
problem. That code has been deleted. The code was introduced in commit
<264410306381> ("Invalidate TLB entries during warm boot").
Now, during a map or unmap operation, the memory associated to each
modified table is flushed. Traversing a table will also flush it's
memory, as there is no way to tell in the current implementation if the
table that has been traversed has also been modified.
Change-Id: I4b520bca27502f1018878061bc5fb82af740bb92
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
During the warm boot sequence:
1. The MMU is enabled with the data cache disabled. The MMU table walker
is set up to access the translation tables as in cacheable memory,
but its accesses are non-cacheable because SCTLR_EL3.C controls them
as well.
2. The interconnect is set up and the CPU enters coherency with the
rest of the system.
3. The data cache is enabled.
If the support for dynamic translation tables is enabled and another CPU
makes changes to a region, the changes may only be present in the data
cache, not in RAM. The CPU that is booting isn't in coherency with the
rest of the system, so the table walker of that CPU isn't either. This
means that it may read old entries from RAM and it may have invalid TLB
entries corresponding to the dynamic mappings.
This is not a problem for the boot code because the mapping is 1:1 and
the regions are static. However, the code that runs after the boot
sequence may need to access the dynamically mapped regions.
This patch invalidates all TLBs during warm boot when the dynamic
translation tables support is enabled to prevent this problem.
Change-Id: I80264802dc0aa1cb3edd77d0b66b91db6961af3d
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.
NOTE: Files that have been imported by FreeBSD have not been modified.
[0]: https://spdx.org/
Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
Various CPU drivers in ARM Trusted Firmware register functions to handle
power-down operations. At present, separate functions are registered to
power down individual cores and clusters.
This scheme operates on the basis of core and cluster, and doesn't cater
for extending the hierarchy for power-down operations. For example,
future CPUs might support multiple threads which might need powering
down individually.
This patch therefore reworks the CPU operations framework to allow for
registering power down handlers on specific level basis. Henceforth:
- Generic code invokes CPU power down operations by the level
required.
- CPU drivers explicitly mention CPU_NO_RESET_FUNC when the CPU has no
reset function.
- CPU drivers register power down handlers as a list: a mandatory
handler for level 0, and optional handlers for higher levels.
All existing CPU drivers are adapted to the new CPU operations framework
without needing any functional changes within.
Also update firmware design guide.
Change-Id: I1826842d37a9e60a9e85fdcee7b4b8f6bc1ad043
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
There are many instances in ARM Trusted Firmware where control is
transferred to functions from which return isn't expected. Such jumps
are made using 'bl' instruction to provide the callee with the location
from which it was jumped to. Additionally, debuggers infer the caller by
examining where 'lr' register points to. If a 'bl' of the nature
described above falls at the end of an assembly function, 'lr' will be
left pointing to a location outside of the function range. This misleads
the debugger back trace.
This patch defines a 'no_ret' macro to be used when jumping to functions
from which return isn't expected. The macro ensures to use 'bl'
instruction for the jump, and also, for debug builds, places a 'nop'
instruction immediately thereafter (unless instructed otherwise) so as
to leave 'lr' pointing within the function range.
Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This patch introduces the PSCI Library interface. The major changes
introduced are as follows:
* Earlier BL31 was responsible for Architectural initialization during cold
boot via bl31_arch_setup() whereas PSCI was responsible for the same during
warm boot. This functionality is now consolidated by the PSCI library
and it does Architectural initialization via psci_arch_setup() during both
cold and warm boots.
* Earlier the warm boot entry point was always `psci_entrypoint()`. This was
not flexible enough as a library interface. Now PSCI expects the runtime
firmware to provide the entry point via `psci_setup()`. A new function
`bl31_warm_entrypoint` is introduced in BL31 and the previous
`psci_entrypoint()` is deprecated.
* The `smc_helpers.h` is reorganized to separate the SMC Calling Convention
defines from the Trusted Firmware SMC helpers. The former is now in a new
header file `smcc.h` and the SMC helpers are moved to Architecture specific
header.
* The CPU context is used by PSCI for context initialization and
restoration after power down (PSCI Context). It is also used by BL31 for SMC
handling and context management during Normal-Secure world switch (SMC
Context). The `psci_smc_handler()` interface is redefined to not use SMC
helper macros thus enabling to decouple the PSCI context from EL3 runtime
firmware SMC context. This enables PSCI to be integrated with other runtime
firmware using a different SMC context.
NOTE: With this patch the architectural setup done in `bl31_arch_setup()`
is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be
invoked prior to architectural setup. It is highly unlikely that the platform
setup will depend on architectural setup and cause any failure. Please be
be aware of this change in sequence.
Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:
* The runtime services framework is now moved to the `common/` folder to
enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
to `plat/common` folder. The original file location now has a stub which
just includes the file from new location to maintain platform compatibility.
Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.
NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86