At present, bl1_arch_setup() and bl31_arch_setup() program the counter
frequency using a value from the memory mapped generic timer. The
generic timer however is not necessarily present on all ARM systems
(although it is architected to be present on all server systems).
This patch moves the timer setup to platform-specific code and updates
the relevant documentation. Also, CNTR.FCREQ is set as the specification
requires the bit corresponding to the counter's frequency to be set when
enabling. Since we intend to use the base frequency, set bit 8.
FixesARM-software/tf-issues#24
Change-Id: I32c52cf882253e01f49056f47c58c23e6f422652
This patch adds the following support to the BL3-1 stage:
1. BL3-1 allows runtime services to specify and determine the security
state of the next image after BL3-1. This has been done by adding
the `bl31_set_next_image_type()` & `bl31_get_next_image_type()`
apis. The default security state is non-secure. The platform api
`bl31_get_next_image_info()` has been modified to let the platform
decide which is the next image in the desired security state.
2. BL3-1 exports the `bl31_prepare_next_image_entry()` function to
program entry into the target security state. It uses the apis
introduced in 1. to do so.
3. BL3-1 reads the information populated by BL2 about the BL3-2 image
into its internal data structures.
4. BL3-1 introduces a weakly defined reference `bl32_init()` to allow
initialisation of a BL3-2 image. A runtime service like the Secure
payload dispatcher will define this function if present.
Change-Id: Icc46dcdb9e475ce6575dd3f9a5dc7a48a83d21d1
This patch reworks BL2 to BL3-1 hand over interface by introducing a
composite structure (bl31_args) that holds the superset of information
that needs to be passed from BL2 to BL3-1.
- The extents of secure memory available to BL3-1
- The extents of memory available to BL3-2 (not yet implemented) and
BL3-3
- Information to execute BL3-2 (not yet implemented) and BL3-3 images
This patch also introduces a new platform API (bl2_get_bl31_args_ptr)
that needs to be implemented by the platform code to export reference to
bl31_args structure which has been allocated in platform-defined memory.
The platform will initialize the extents of memory available to BL3-3
during early platform setup in bl31_args structure. This obviates the
need for bl2_get_ns_mem_layout platform API.
BL2 calls the bl2_get_bl31_args_ptr function to get a reference to
bl31_args structure. It uses the 'bl33_meminfo' field of this structure
to load the BL3-3 image. It sets the entry point information for the
BL3-3 image in the 'bl33_image_info' field of this structure. The
reference to this structure is passed to the BL3-1 image.
Also fixes issue ARM-software/tf-issues#25
Change-Id: Ic36426196dd5ebf89e60ff42643bed01b3500517
This patch adds guards so that an exception vector exceeding 32
instructions will generate a compile-time error. This keeps the
exception handlers in check from spilling over.
Change-Id: I7aa56dd0071a333664e2814c656d3896032046fe
This patch uses the reworked exception handling support to handle
runtime service requests through SMCs following the SMC calling
convention. This is a giant commit since all the changes are
inter-related. It does the following:
1. Replace the old exception handling mechanism with the new one
2. Enforce that SP_EL0 is used C runtime stacks.
3. Ensures that the cold and warm boot paths use the 'cpu_context'
structure to program an ERET into the next lower EL.
4. Ensures that SP_EL3 always points to the next 'cpu_context'
structure prior to an ERET into the next lower EL
5. Introduces a PSCI SMC handler which completes the use of PSCI as a
runtime service
Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
This patch introduces the reworked exception handling logic which lays
the foundation for accessing runtime services in later patches. The
type of an exception has a greater say in the way it is
handled. SP_EL3 is used as the stack pointer for:
1. Determining the type of exception and handling the unexpected ones
on the exception stack
2. Saving and restoring the essential general purpose and system
register state after exception entry and prior to exception exit.
SP_EL0 is used as the stack pointer for handling runtime service
requests e.g. SMCs. A new structure for preserving general purpose
register state has been added to the 'cpu_context' structure. All
assembler ensures that it does not use callee saved registers
(x19-x29). The C runtime preserves them across functions calls. Hence
EL3 code does not have to save and restore them explicitly.
Since the exception handling framework has undergone substantial change,
the changes have been kept in separate files to aid readability. These
files will replace the existing ones in subsequent patches.
Change-Id: Ice418686592990ff7a4260771e8d6676e6c8c5ef
This patch introduces functions for saving and restoring shared system
registers between secure and non-secure EL1 exception levels, VFP
registers and essential EL3 system register and other state. It also
defines the 'cpu_context' data structure which will used for saving and
restoring execution context for a given security state. These functions
will allow runtime services like PSCI and Secure payload dispatcher to
implement logic for switching between the secure and non-secure states.
The save and restore functions follow AArch64 PCS and only use
caller-saved temporary registers.
Change-Id: I8ee3aaa061d3caaedb28ae2c5becb9a206b6fd74
This patch ensures that VBAR_EL3 points to the simple stack-less
'early_exceptions' when the C runtime stack is not correctly setup to
use the more complex 'runtime_exceptions'. It is initialised to
'runtime_exceptions' once this is done.
This patch also moves all exception vectors into a '.vectors' section
and modifies linker scripts to place all such sections together. This
will minimize space wastage from alignment restrictions.
Change-Id: I8c3e596ea3412c8bd582af9e8d622bb1cb2e049d
Ctags seem to have a problem with generating tags for assembler symbols
when a comment immediately follows an assembly label.
This patch inserts a single space character between the label
definition and the following comments to help ctags.
The patch is generated by the command:
git ls-files -- \*.S | xargs sed -i 's/^\([^:]\+\):;/\1: ;/1'
Change-Id: If7a3c9d0f51207ea033cc8b8e1b34acaa0926475
Traps when accessing architectural features are disabled by clearing bits
in CPTR_EL3 during early boot, including accesses to floating point
registers. The value of this register was previously undetermined, causing
unwanted traps to EL3. Future EL3 code (for example, context save/restore
code) may use floating point registers, although they are not used by current
code.
Also, the '-mgeneral-regs-only' flag is enabled in the GCC settings to
prevent generation of code that uses floating point registers.
Change-Id: I9a03675f6387bbbee81a6f2c9ccf81150db03747
ns_entry_info used to be a per-cpu array. This is a waste of space
because it is only accessed by the primary CPU on the cold boot path.
This patch reduces ns_entry_info to a single-cpu area.
Change-Id: I647c70c4e76069560f1aaad37a1d5910f56fba4c
The runtime exception handling assembler code used magic numbers for
saving and restoring the general purpose register context on stack
memory. The memory is interpreted as a 'gp_regs' structure and the
magic numbers are offsets to members of this structure. This patch
replaces the magic number offsets with constants. It also adds compile
time assertions to prevent an incorrect assembler view of this
structure.
Change-Id: Ibf125bfdd62ba3a33e58c5f1d71f8c229720781c
- Add instructions for contributing to ARM Trusted Firmware.
- Update copyright text in all files to acknowledge contributors.
Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
This patch makes sure the C runtime environment is properly
initialised before executing any C code.
- Zero-initialise NOBITS sections (e.g. the bss section).
- Relocate BL1 data from ROM to RAM.
Change-Id: I0da81b417b2f0d1f7ef667cc5131b1e47e22571f
- Check at link-time that bootloader images will fit in memory
at run time and that they won't overlap each other.
- Remove text and rodata orphan sections.
- Define new linker symbols to remove the need for platform setup
code to know the order of sections.
- Reduce the size of the raw binary images by cutting some sections
out of the disk image and allocating them at load time, whenever
possible.
- Rework alignment constraints on sections.
- Remove unused linker symbols.
- Homogenize linker symbols names across all BLs.
- Add some comments in the linker scripts.
Change-Id: I47a328af0ccc7c8ab47fcc0dc6e7dd26160610b9
Any asynchronous exception caused by the firmware should be handled
in the firmware itself. For this reason, unmask SError exceptions
(and Debug ones as well) on all boot paths. Also route external
abort and SError interrupts to EL3, otherwise they will target EL1.
Change-Id: I9c191d2d0dcfef85f265641c8460dfbb4d112092
blx_plat_arch_setup() should only perform platform-specific
architectural setup, e.g. enabling the MMU. This patch moves
generic architectural setup code out of blx_plat_arch_setup().
Change-Id: I4ccf56b8c4a2fa84909817779a2d97a14aaafab6