The TZC-400 driver previously allowed the possibility of multiple
controller instances to be present in the same executable. This
was unnecessary since there will only ever be one instance.
This change simplifies the tzc_init() function to only take the
base address argument needed by implementation, conforming to the
driver initialization model of other drivers. It also hides some
of the implementation details that were previously exposed by the
API.
The FVP port has been updated accordingly.
THIS CHANGE REQUIRES ALL PLATFORM PORTS THAT USE THE TZC-400
DRIVER TO BE UPDATED
FixesARM-software/tf-issues#181
Change-Id: I7b721edf947064989958d8f457d6462d92e742c8
Move the remaining IO storage source file (io_storage.c) from the
lib to the drivers directory. This requires that platform ports
explicitly add this file to the list of source files.
Also move the IO header files to a new sub-directory, include/io.
Change-Id: I862b1252a796b3bcac0d93e50b11e7fb2ded93d6
The intent of io_init() was to allow platform ports to provide
a data object (io_plat_data_t) to the IO storage framework to
allocate into. The abstraction was incomplete because io_plat_data_t
uses a platform defined constant and the IO storage framework
internally allocates other arrays using platform defined constants.
This change simplifies the implementation by instantiating the
supporting objects in the IO storage framework itself. There is now
no need for the platform to call io_init().
The FVP port has been updated accordingly.
THIS CHANGE REQUIRES ALL PLATFORM PORTS THAT USE THE IO STORAGE
FRAMEWORK TO BE UDPATED.
Change-Id: Ib48ac334de9e538064734334c773f8b43df3a7dc
* Create cci_init() function in CCI-400 driver to allow platform
to provide arguments needed by the driver (i.e. base address
and cluster indices for the ACE slave interfaces).
* Rename cci_(en|dis)able_coherency to
cci_(en|dis)able_cluster_coherency to make it clear that
the driver only enables/disables the coherency of CPU
clusters and not other devices connected to the CCI-400.
* Update FVP port to use new cci_init() function and remove
unnecessary CCI defintions from platform_def.h. Also rename
fvp_cci_setup() to fvp_cci_enable() to more clearly
differentiate between CCI initialization and enabling.
THIS CHANGE REQUIRES PLATFORM PORTS THAT USE THE CCI-400 DRIVER
TO BE UPDATED
FixesARM-software/tf-issues#168
Change-Id: I1946a51409b91217b92285b6375082619f607fec
This patch groups the current contents of the Trusted DRAM region at
address 0x00_0600_0000 (entrypoint mailboxes and BL3-1 parameters) in
a single shared memory area that may be allocated to Trusted SRAM
(default) or Trusted DRAM at build time by setting the
FVP_SHARED_DATA_LOCATION make variable. The size of this shared
memory is 4096 bytes.
The combination 'Shared data in Trusted SRAM + TSP in Trusted DRAM'
is not currently supported due to restrictions in the maximum number
of mmu tables that can be created.
Documentation has been updated to reflect these changes.
FixesARM-software/tf-issues#100
Change-Id: I26ff04d33ce4cacf8d770d1a1e24132b4fc53ff0
Fix the instructions for resetting to the BL3-1 entrypoint in the
user guide. The BL3-1 and BL3-2 image locations changed in the fix
to ARM-software/tf-issues#117 (commit a1b6db6).
FixesARM-software/tf-issues#237
Change-Id: I764eb17c66034511efb984c0e7cfda29bd99198f
Fix the following issues with the console log output:
* Make sure the welcome string is the first thing in the log output
(during normal boot).
* Prefix each message with the BL image name so it's clear which
BL the output is coming from.
* Ensure all output is wrapped in one of the log output macros so it can
be easily compiled out if necessary. Change some of the INFO() messages
to VERBOSE(), especially in the TSP.
* Create some extra NOTICE() and INFO() messages during cold boot.
* Remove all usage of \r in log output.
FixesARM-software/tf-issues#231
Change-Id: Ib24f7acb36ce64bbba549f204b9cde2dbb46c8a3
Create new LOG_LEVEL build option, which controls the amount of
console output compiled into the build. This should be one of the
following:
0 (LOG_LEVEL_NONE)
10 (LOG_LEVEL_NOTICE)
20 (LOG_LEVEL_ERROR)
30 (LOG_LEVEL_WARNING)
40 (LOG_LEVEL_INFO)
50 (LOG_LEVEL_VERBOSE)
All log output up to and including the log level is compiled into the
build. The default value is 40 in debug builds and 20 in release
builds.
Complement the existing INFO, WARN and ERROR console output macros
with NOTICE and VERBOSE macros, which are conditionally compiled in
depending on the value of LOG_LEVEL.
FixesARM-software/tf-issues#232
Change-Id: I951e2f333e7b90fc4b1060741d9a6db699d5aa72
Secure ROM at address 0x0000_0000 is defined as FVP_TRUSTED_ROM
Secure RAM at address 0x0400_0000 is defined as FVP_TRUSTED_SRAM
Secure RAM at address 0x0600_0000 is defined as FVP_TRUSTED_DRAM
BLn_BASE and BLn_LIMIT definitions have been updated and are based on
these new memory regions.
The available memory for each bootloader in the linker script is
defined by BLn_BASE and BLn_LIMIT, instead of the complete memory
region.
TZROM_BASE/SIZE and TZRAM_BASE/SIZE are no longer required as part of
the platform porting.
FVP common definitions are defined in fvp_def.h while platform_def.h
contains exclusively (with a few exceptions) the definitions that are
mandatory in the porting guide. Therefore, platform_def.h now includes
fvp_def.h instead of the other way around.
Porting guide has been updated to reflect these changes.
Change-Id: I39a6088eb611fc4a347db0db4b8f1f0417dbab05
This patch separates the stack size for each BL stage and
reduces it after stack usage analysis was done.
FixesARM-software/tf-issues#200
Change-Id: I8edc6de2551b0a6788761d121937692b2149bb29
This patch defines a compile time macro for each boot loader stage
which allows compilation of code only for a specific stage.
Change-Id: I3a4068404cd3dc26d652556ca9ca7afea8dd28ef
Tests show a slight reduction in code size compared to 13.11.
User guide updated.
FixesARM-software/tf-issues#207
Change-Id: I9b80a5d7820cdfd443cac4d4b63f925b74a8c3a3
This patch adds support for BL3-2 initialization by asynchronous
method where BL3-1 transfers control to BL3-2 using world switch.
After BL3-2 initialization, it transfers control to BL3-3 via SPD
service handler. The SPD service handler initializes the CPU context
to BL3-3 entrypoint depending on the return function indentifier from
TSP initialization.
FixesARM-software/TF-issues#184
Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
There is no mechanism which allows the TSPD to specify what SPSR to
use when entering BL3-2 instead of BL3-3. This patch divides the
responsibility between tspd_setup() and tspd_init() for initializing
the TSPD and TSP to support the alternate BL3-2 initialization flow
where BL3-1 handsover control to BL3-2 instead of BL3-3.
SPSR generated by TSPD for TSP is preserved due the new division of
labour which fixes#174.
This patch also moves the cpu_context initialization code from
tspd_setup() to tspd_init() immediately before entering the TSP.
Instead tspd_setup() updates the BL3-2 entrypoint info structure
with the state required for initializing the TSP later.
Fixes ARM-software/TF-issues#174
Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
The purpose of platform_is_primary_cpu() is to determine after reset
(BL1 or BL3-1 with reset handler) if the current CPU must follow the
cold boot path (primary CPU), or wait in a safe state (secondary CPU)
until the primary CPU has finished the system initialization.
This patch removes redundant calls to platform_is_primary_cpu() in
subsequent bootloader entrypoints since the reset handler already
guarantees that code is executed exclusively on the primary CPU.
Additionally, this patch removes the weak definition of
platform_is_primary_cpu(), so the implementation of this function
becomes mandatory. Removing the weak symbol avoids other
bootloaders accidentally picking up an invalid definition in case the
porting layer makes the real function available only to BL1.
The define PRIMARY_CPU is no longer mandatory in the platform porting
because platform_is_primary_cpu() hides the implementation details
(for instance, there may be platforms that report the primary CPU in
a system register). The primary CPU definition in FVP has been moved
to fvp_def.h.
The porting guide has been updated accordingly.
FixesARM-software/tf-issues#219
Change-Id: If675a1de8e8d25122b7fef147cb238d939f90b5e
This patch further optimizes the EL3 register state stored in
cpu_context. The 2 registers which are removed from cpu_context are:
* cntfrq_el0 is the system timer register which is writable
only in EL3 and it can be programmed during cold/warm boot. Hence
it need not be saved to cpu_context.
* cptr_el3 controls access to Trace, Floating-point, and Advanced
SIMD functionality and it is programmed every time during cold
and warm boot. The current BL3-1 implementation does not need to
modify the access controls during normal execution and hence
they are expected to remain static.
FixesARM-software/tf-issues#197
Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
Assert a valid security state using the macro sec_state_is_valid().
Replace assert() with panic() in those cases that might arise
because of runtime errors and not programming errors.
Replace panic() with assert() in those cases that might arise
because of programming errors.
FixesARM-software/tf-issues#96
Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
This patch adds the CPUECTLR_EL1 register and the CCI Snoop Control
register to the list of registers being reported when an unhandled
exception occurs.
Change-Id: I2d997f2d6ef3d7fa1fad5efe3364dc9058f9f22c
This patch reworks the crash reporting mechanism to further
optimise the stack and code size. The reporting makes use
of assembly console functions to avoid calling C Runtime
to report the CPU state. The crash buffer requirement is
reduced to 64 bytes with this implementation. The crash
buffer is now part of per-cpu data which makes retrieving
the crash buffer trivial.
Also now panic() will use crash reporting if
invoked from BL3-1.
FixesARM-software/tf-issues#199
Change-Id: I79d27a4524583d723483165dc40801f45e627da5
The patch implements a macro ASM_ASSERT() which can
be invoked from assembly code. When assertion happens,
file name and line number of the check is written
to the crash console.
FixesARM-software/tf-issues#95
Change-Id: I6f905a068e1c0fa4f746d723f18df60daaa00a86
This patch introduces platform APIs to initialise and
print a character on a designated crash console.
For the FVP platform, PL011_UART0 is the designated
crash console. The platform porting guide is also updated
to document the new APIs.
Change-Id: I5e97d8762082e0c88c8c9bbb479353eac8f11a66
This patch adds baud rate and UART clock frequency as parameters
to the pl011 driver api console_init(). This allows each platform
to specify UART clock and baud rate according to their specific
hardware implementation.
FixesARM-software/tf-issues#215
Change-Id: Id13eef70a1c530e709b34dd1e6eb84db0797ced2
This patch replaces the pl011 console family of functions
with their equivalents defined in assembly. The baud rate is
defined by the PL011_BAUDRATE macro and IBRD and FBRD values
for pl011 are computed statically. This patch will enable
us to invoke the console functions without the C Runtime Stack.
Change-Id: Ic3f7b7370ded38bf9020bf746b362081b76642c7
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of
SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset
in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in
S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They
do not have to be saved and restored either. The M, WXN and optionally the C
bit are set in the enable_mmu_elX() function. This is done during both the warm
and cold boot paths.
FixesARM-software/tf-issues#226
Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
This patch removes the allocation of memory for coherent stacks, associated
accessor function and some dead code which called the accessor function. It also
updates the porting guide to remove the concept and the motivation behind using
stacks allocated in coherent memory.
FixesARM-software/tf-issues#198
Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
Print out Trusted Firmware version at runtime at each BL stage.
Message consists of TF version as defined statically in the Makefile
(e.g. v0.4), build mode (debug|release) and a customizable build
string:
1. By defining BUILD_STRING in command line when building TF
2. Default string is git commit ID
3. Empty if git meta-data is not available
FixesARM-software/tf-issues#203
Change-Id: I5c5ba438f66ab68810427d76b49c5b9177a957d6
This patch implements a "tf_printf" which supports only the commonly
used format specifiers in Trusted Firmware, which uses a lot less
stack space than the stdlib printf function.
FixesARM-software/tf-issues#116
Change-Id: I7dfa1944f4c1e634b3e2d571f49afe02d109a351
This patch uses stacks allocated in normal memory to enable the MMU early in the
warm boot path thus removing the dependency on stacks allocated in coherent
memory. Necessary cache and stack maintenance is performed when a cpu is being
powered down and up. This avoids any coherency issues that can arise from
reading speculatively fetched stale stack memory from another CPUs cache. These
changes affect the warm boot path in both BL3-1 and BL3-2.
The EL3 system registers responsible for preserving the MMU state are not saved
and restored any longer. Static values are used to program these system
registers when a cpu is powered on or resumed from suspend.
Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
This patch adds a 'flags' parameter to each exception level specific function
responsible for enabling the MMU. At present only a single flag which indicates
whether the data cache should also be enabled is implemented. Subsequent patches
will use this flag when enabling the MMU in the warm boot paths.
Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot
loader stages to not use stacks allocated in coherent memory for early platform
setup and enabling the MMU. Stacks allocated in normal memory are used instead.
Attributes for stack memory change from nGnRnE when the MMU is disabled to
Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is
possible for the CPU to read stale stack memory after the MMU is enabled from
another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while
using normal stacks when multiple CPUs are a part of the same coherency
domain. It is safe to do so in the cold boot path as only the primary cpu
executes it. The secondary cpus are in a quiescent state.
This patch does not remove the allocation of coherent stack memory. That is done
in a subsequent patch.
Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
The ARM_GIC_ARCH build option was supposed to default to 2 on all
platforms. However, the default value was set in the FVP makefile
so for all other platforms it wasn't even defined.
This patch moves the default value to the main Makefile. The platform
port can then override it if needed.
Change-Id: I8e2da1cce7ffa3ed18814bbdcbcf2578101f18a6
platform_get_entrypoint() did not consider that a wakeup due to
System Reset Pin (by reading the power controller's PSYSR) requires
a cold boot. As a result, the code would execute the warm boot path
and eventually panic because entrypoint mailboxes are empty.
This patch ensures that the following wake-up reasons result in cold
boot:
- Cold Power-on
- System Reset Pin (includes reset by software)
FixesARM-software/tf-issues#217
Change-Id: I65ae0a0f7a46548b575900a5aac107d352b0e2cd