This patch introduces an additional layer of abstraction between
CSS power management hooks and the SCPI driver. A new set of APIs
are introduced in order to abstract out power management operations
from underlying communication mechanism with the SCP.
The SCPI and the associated MHU drivers are moved into a `drivers`
folder in CSS. The new SCP communication abstraction layer is added
in the `drivers/scp` folder. The existing CSS power management
uses the new APIs to reflect this abstraction.
Change-Id: I7d775129fc0558e9703c2724523fb8f0a916838c
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
This patch adds changes in ARM platform code to use new
version of image loading.
Following are the major changes:
-Refactor the signatures for bl31_early_platform_setup()
and arm_bl31_early_platform_setup() function to use
`void *` instead of `bl31_params_t *`.
-Introduce `plat_arm_bl2_handle_scp_bl2()` to handle
loading of SCP_BL2 image from BL2.
-Remove usage of reserve_mem() function from
`arm_bl1_early_platform_setup()`
-Extract BL32 & BL33 entrypoint info, from the link list
passed by BL2, in `arm_bl31_early_platform_setup()`
-Provides weak definitions for following platform functions:
plat_get_bl_image_load_info
plat_get_next_bl_params
plat_flush_next_bl_params
bl2_plat_handle_post_image_load
-Instantiates a descriptor array for ARM platforms
describing image and entrypoint information for
`SCP_BL2`, `BL31`, `BL32` and `BL33` images.
All the above changes are conditionally compiled using the
`LOAD_IMAGE_V2` flag.
Change-Id: I5e88b9785a3df1a2b2bbbb37d85b8e353ca61049
This patch implements CSS platform hook to support NODE_HW_STATE PSCI
API. The platform hook queries SCP to obtain CSS power state. Power
states returned by SCP are then converted to expected PSCI return codes.
Juno's PSCI operation structure is modified to use the CSS
implementation.
Change-Id: I4a5edac0e5895dd77b51398cbd78f934831dafc0
This patch adds the function scpi_get_css_power_state to perform the
'Get CSS Power State' SCP command and handle its response. The function
parses SCP response to obtain power states of requested cluster and CPUs
within.
Change-Id: I3ea26e48dff1a139da73f6c1e0893f21accaf9f0
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:
* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
whether AArch64 or AArch32.
* Use generic C types where-ever possible.
In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.
Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
In GICv3 mode, the non secure group1 interrupts are signalled via the
FIQ line in EL3. To support waking up from CPU_SUSPEND to standby on
these systems, EL3 should route FIQ to EL3 temporarily before wfi and
restore the original setting after resume. This patch makes this change
for the CSS platforms in the `css_cpu_standby` psci pm ops hook.
Change-Id: Ibf3295d16e2f08da490847c1457bc839e1bac144
The common topology description helper funtions and macros for
ARM Standard platforms assumed a dual cluster system. This is not
flexible enough to scale to multi cluster platforms. This patch does
the following changes for more flexibility in defining topology:
1. The `plat_get_power_domain_tree_desc()` definition is moved from
`arm_topology.c` to platform specific files, that is `fvp_topology.c`
and `juno_topology.c`. Similarly the common definition of the porting
macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform
specific `platform_def.h` header.
2. The ARM common layer porting macros which were dual cluster specific
are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced
which must be defined by each ARM standard platform.
3. A new mandatory ARM common layer porting API
`plat_arm_get_cluster_core_count()` is introduced to enable the common
implementation of `arm_check_mpidr()` to validate MPIDR.
4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been
introduced which allows the user to specify the cluster count to be
used to build the topology tree within Trusted Firmare. This enables
Trusted Firmware to be built for multi cluster FVP models.
Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
The shared memory region on ARM platforms contains the mailboxes and,
on Juno, the payload area for communication with the SCP. This shared
memory may be configured as normal memory or device memory at build
time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on
Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED').
When set as normal memory, the platform port performs the corresponding
cache maintenance operations. From a functional point of view, this is
the equivalent of setting the shared memory as device memory, so there
is no need to maintain both options.
This patch removes the option to specify the shared memory as normal
memory on ARM platforms. Shared memory is always treated as device
memory. Cache maintenance operations are no longer needed and have
been replaced by data memory barriers to guarantee that payload and
MHU are accessed in the right order.
Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
ARM Trusted Firmware supports 2 different interconnect peripheral
drivers: CCI and CCN. ARM platforms are implemented using either of the
interconnect peripherals.
This patch adds a layer of abstraction to help ARM platform ports to
choose the right interconnect driver and corresponding platform support.
This is as described below:
1. A set of ARM common functions have been implemented to initialise an
interconnect and for entering/exiting a cluster from coherency. These
functions are prefixed as "plat_arm_interconnect_". Weak definitions of
these functions have been provided for each type of driver.
2.`plat_print_interconnect_regs` macro used for printing CCI registers is
moved from a common arm_macros.S to cci_macros.S.
3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure
is renamed to `ARM_CONFIG_HAS_INTERCONNECT`.
Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
Current code mandates loading of SCP_BL2/SCP_BL2U images for all
CSS platforms. On future ARM CSS platforms, the Application
Processor (AP) might not need to load these images. So, these
items can be removed from the FIP on those platforms.
BL2 tries to load SCP_BL2/SCP_BL2U images if their base
addresses are defined causing boot error if the images are not
found in FIP.
This change adds a make flag `CSS_LOAD_SCP_IMAGES` which if set
to `1` does:
1. Adds SCP_BL2, SCP_BL2U images to FIP.
2. Defines the base addresses of these images so that AP loads
them.
And vice-versa if it is set to `0`. The default value is set to
`1`.
Change-Id: I5abfe22d5dc1e9d80d7809acefc87b42a462204a
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address
for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To
cater for future ARM platforms this is made platform specific.
Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made
platform specific.
Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
This patch moves the definition of some macros used only on
ARM platforms from common headers to platform specific headers.
It also forces all ARM standard platforms to have distinct
definitions (even if they are usually the same).
1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been
moved from `css_def.h` to `platform_def.h`.
2. `MHU_BASE` used in CSS platforms is moved from common css_def.h
to platform specific header `platform_def.h` on Juno and
renamed as `PLAT_ARM_MHU_BASE`.
3. To cater for different sizes of BL images, new macros like
`PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All
ARM platforms need to define them for each image.
Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
Replaced a long dash in a comment by the ASCII character '-'. Support
for multibyte character in the source character set is not enforced by
the C99 standard. To maximize compatibility with C processing tools
(e.g. compilers or static code analysis tools), they should be removed.
Change-Id: Ie318e380d3b44755109f042a76ebfd2229f42ae3
The fip_create tool specifies images in the command line using the
ARM TF naming convention (--bl2, --bl31, etc), while the cert_create
tool uses the TBBR convention (--tb-fw, --soc-fw, etc). This double
convention is confusing and should be aligned.
This patch updates the fip_create command line options to follow the
TBBR naming convention. Usage examples in the User Guide have been
also updated.
NOTE: users that build the FIP by calling the fip_create tool directly
from the command line must update the command line options in their
scripts. Users that build the FIP by invoking the main ARM TF Makefile
should not notice any difference.
Change-Id: I84d602630a2585e558d927b50dfde4dd2112496f
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:
https://github.com/ARM-software/arm-trusted-firmware/wiki
Changes apply to output messages, comments and documentation.
non-ARM platform files have been left unmodified.
Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
This patch replaces all references to the SCP Firmware (BL0, BL30,
BL3-0, bl30) with the image terminology detailed in the TF wiki
(https://github.com/ARM-software/arm-trusted-firmware/wiki):
BL0 --> SCP_BL1
BL30, BL3-0 --> SCP_BL2
bl30 --> scp_bl2
This change affects code, documentation, build system, tools and
platform ports that load SCP firmware. ARM plaforms have been
updated to the new porting API.
IMPORTANT: build option to specify the SCP FW image has changed:
BL30 --> SCP_BL2
IMPORTANT: This patch breaks compatibility for platforms that use BL2
to load SCP firmware. Affected platforms must be updated as follows:
BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
BL30_BASE --> SCP_BL2_BASE
bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()
Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
Firmware update feature needs a new FIP called `fwu_fip.bin` that
includes Secure(SCP_BL2U, BL2U) and Normal world(NS_BL2U) images
along with the FWU_CERT certificate in order for NS_BL1U to load
the images and help the Firmware update process to complete.
This patch adds the capability to support the new target `fwu_fip`
which includes above mentioned FWU images in the make files.
The new target of `fwu_fip` and its dependencies are included for
compilation only when `TRUSTED_BOARD_BOOT` is defined.
Change-Id: Ie780e3aac6cbd0edfaff3f9af96a2332bd69edbc
This patch adds support for Firmware update in BL2U for ARM
platforms such that TZC initialization is performed on all
ARM platforms and (optionally) transfer of SCP_BL2U image on
ARM CSS platforms.
BL2U specific functions are added to handle early_platform and
plat_arch setup. The MMU is configured to map in the BL2U
code/data area and other required memory.
Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
This patch adds support for secure setup of the SoC on CSS
platforms in BL1.
This change is required to provide memory access to normal
world images that take part in upcoming Firmware Update feature.
Change-Id: Ib202fb6cb82622c1874b700637d82ea72575e6fe
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
separate drivers instead of providing a single driver that can work on both
versions of the GIC architecture. These drivers correspond to the following
software use cases:
1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
e.g. GIC-400
2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features
3. A deprecated GICv3 driver that operates in legacy mode. This driver can
operate only in the GICv2 mode in the secure world. On a GICv3 system, this
driver allows normal world to run in either GICv3 mode (asymmetric mode)
or in the GICv2 mode. Both modes of operation are deprecated on GICv3
systems.
ARM platforms implement both versions of the GIC architecture. This patch adds a
layer of abstraction to help ARM platform ports chose the right GIC driver and
corresponding platform support. This is as described below:
1. A set of ARM common functions have been introduced to initialise the GIC and
the driver during cold and warm boot. These functions are prefixed as
"plat_arm_gic_". Weak definitions of these functions have been provided for
each type of driver.
2. Each platform includes the sources that implement the right functions
directly into the its makefile. The FVP can be instantiated with different
versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
to specify which of the three drivers should be included in the build.
3. A list of secure interrupts has to be provided to initialise each of the
three GIC drivers. For GIC v3.0 the interrupt ids have to be further
categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
types are merged and treated as Group 0 interrupts.
The two lists of interrupts are exported from the platform_def.h. The lists
are constructed by adding a list of board specific interrupt ids to a list of
ids common to all ARM platforms and Compute sub-systems.
This patch also makes some fields of `arm_config` data structure in FVP redundant
and these unused fields are removed.
Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
This patch adds platform helpers for the new GICv2 and GICv3 drivers in
plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate
file in their build according to the GIC driver to be used. The existing
plat_gic.c is only meant for the legacy GIC driver.
In the case of ARM platforms, the major changes are as follows:
1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU
interface register values has been modified to detect the type of CPU
interface being used (System register or memory mappped interface) before
using the right interface to print the registers.
2. The power management helper function that is called after a core is powered
up has been further refactored. This is to highlight that the per-cpu
distributor interface should be initialised only when the core was originally
powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API
was used.
3. In the case of CSS platforms, the system power domain restore helper
`arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish`
handler as the system power domain is always expected to be initialized when
the `on_finish` handler is invoked.
Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
By default, only the primary CPU is powered on by SCP on CSS
platforms. Secondary CPUs are then powered on later using PSCI
calls.
However, it is possible to power on more than one CPU at boot time
using platform specific settings. In this case, several CPUs will
enter the Trusted Firmware and execute the cold boot path code.
This is currently not supported and secondary CPUs will panic.
This patch preserves this behaviour in the normal boot flow.
However, when booting an EL3 payload, secondary CPUs are now held in
a pen until their mailbox is populated, at which point they jump to
this address. Note that, since all CPUs share the same mailbox, they
will all be released from their holding pen at the same time and the
EL3 payload is responsible to arbitrate execution between CPUs if
required.
Change-Id: I83737e0c9f15ca5e73afbed2e9c761bc580735b9
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.
Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.
The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.
The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.
The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.
This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.
Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.
According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.
A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.
Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
This patch implements the necessary topology changes for supporting
system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
specific. In addition, the `arm_power_domain_tree_desc[]` and
`arm_pm_idle_states[]` are modified to support the system power domain
at level 2. With this patch, even though the power management operations
involving the system power domain will not return any error, the platform
layer will silently ignore any operations to the power domain. The actual
power management support for the system power domain will be added later.
Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
This patch is a complete rework of the main Makefile. Functionality
remains the same but the code has been reorganized in sections in
order to improve readability and facilitate adding future extensions.
A new file 'build_macros.mk' has been created and will contain common
definitions (variables, macros, etc) that may be used from the main
Makefile and other platform specific makefiles.
A new macro 'FIP_ADD_IMG' has been introduced and it will allow the
platform to specify binary images and the necessary checks for a
successful build. Platforms that require a BL30 image no longer need
to specify the NEED_BL30 option. The main Makefile is now completely
unaware of additional images not built as part of Trusted Firmware,
like BL30. It is the platform responsibility to specify images using
the macro 'FIP_ADD_IMG'. Juno uses this macro to include the BL30
image in the build.
BL33 image is specified in the main Makefile to preserve backward
compatibility with the NEED_BL33 option. Otherwise, platform ports
that rely on the definition of NEED_BL33 might break.
All Trusted Board Boot related definitions have been moved to a
separate file 'tbbr_tools.mk'. The main Makefile will include this
file unless the platform indicates otherwise by setting the variable
'INCLUDE_TBBR_MK := 0' in the corresponding platform.mk file. This
will keep backward compatibility but ideally each platform should
include the corresponding TBB .mk file in platform.mk.
Change-Id: I35e7bc9930d38132412e950e20aa2a01e2b26801
Currently all ARM CSS platforms which include css_helpers.S use the same
strong definition of `plat_arm_calc_core_pos`. This patch allows these CSS
platforms to define their own strong definition of this function.
* Replace the strong definition of `plat_arm_calc_core_pos` in
css_helpers.S with a utility function `css_calc_core_pos_swap_cluster`
does the same thing (swaps cluster IDs). ARM CSS platforms may choose
to use this function or not.
* Add a Juno strong definition of `plat_arm_calc_core_pos`, which uses
`css_calc_core_pos_swap_cluster`.
Change-Id: Ib5385ed10e44adf6cd1398a93c25973eb3506d9d
This patch does the following reorganization to psci power management (PM)
handler setup for ARM standard platform ports :
1. The mailbox programming required during `plat_setup_psci_ops()` is identical
for all ARM platforms. Hence the implementation of this API is now moved
to the common `arm_pm.c` file. Each ARM platform now must define the
PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
as ARM_SHARED_RAM_BASE.
2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
exported via `plat_arm_psci_pm_ops`. This allows the common implementation
of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
In the case of CSS platforms, a default weak implementation of the same is
provided in `css_pm.c` which can be overridden by each CSS platform.
3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
made library functions and a new header file `css_pm.h` is added to export
these generic PM handlers. This allows the platform to reuse the
adequate CSS PM handlers and redefine others which need to be customized
when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.
Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
This patch adds the necessary documentation updates to porting_guide.md
for the changes in the platform interface mandated as a result of the new
PSCI Topology and power state management frameworks. It also adds a
new document `platform-migration-guide.md` to aid the migration of existing
platform ports to the new API.
The patch fixes the implementation and callers of
plat_is_my_cpu_primary() to use w0 as the return parameter as implied by
the function signature rather than x0 which was used previously.
Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
This patch implements the platform power managment handler to verify
non secure entrypoint for ARM platforms. The handler ensures that the
entry point specified by the normal world during CPU_SUSPEND, CPU_ON
or SYSTEM_SUSPEND PSCI API is a valid address within the non secure
DRAM.
Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
Now that the FVP mailbox is no longer zeroed, the function
platform_mem_init() does nothing both on FVP and on Juno. Therefore,
this patch pools it as the default implementation on ARM platforms.
Change-Id: I007220f4531f15e8b602c3368a1129a5e3a38d91
Since there is a unique warm reset entry point, the FVP and Juno
port can use a single mailbox instead of maintaining one per core.
The mailbox gets programmed only once when plat_setup_psci_ops()
is invoked during PSCI initialization. This means mailbox is not
zeroed out during wakeup.
Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
This patch adds support to the Juno and FVP ports for composite power states
with both the original and extended state-id power-state formats. Both the
platform ports use the recommended state-id encoding as specified in
Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag
ARM_RECOM_STATE_ID_ENC is used to include this support.
By default, to maintain backwards compatibility, the original power state
parameter format is used and the state-id field is expected to be zero.
Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
This patch migrates ARM reference platforms, Juno and FVP, to the new platform
API mandated by the new PSCI power domain topology and composite power state
frameworks. The platform specific makefiles now exports the build flag
ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer.
Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
For CSS based platforms, the constants MHU_SECURE_BASE and
MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes.
As such, they were misnamed because the mailboxes are completely
unrelated to the MHU hardware.
This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines.
The address of the Trusted Mailboxes is now relative to the base of
the Trusted SRAM.
This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE,
which is the address of the first memory region used for communication
between AP and SCP. This is used by the BOM and SCPI protocols.
Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
This patch fixes the incorrect bit width used to extract the primary
cpu id from `ap_data` exported by scp at SCP_BOOT_CFG_ADDR in
platform_is_primary_cpu().
Change-Id: I14abb361685f31164ecce0755fc1a145903b27aa
There has been a breaking change in the communication protocols used
between the AP cores and the SCP on CSS based platforms like Juno.
This means both the AP Trusted Firmware and SCP firmware must be
updated at the same time.
In case the user forgets to update the SCP ROM firmware, this patch
detects when it still uses the previous version of the communication
protocol. It will then output a comprehensive error message that helps
trouble-shoot the issue.
Change-Id: I7baf8f05ec0b7d8df25e0ee53df61fe7be0207c2
The communication protocol used between the AP cores and the SCP
in CSS-based platforms like Juno has undergone a number of changes.
This patch makes the required modifications to the SCP Boot Protocol,
SCPI Protocol and MHU driver code in shared CSS platform code so that
the AP cores are still able to communicate with the SCP.
This patch focuses on the mandatory changes to make it work. The
design of this code needs to be improved but this will come in
a subsequent patch.
The main changes are:
- MHU communication protocol
- The command ID and payload size are no longer written into the
MHU registers directly. Instead, they are stored in the payload
area. The MHU registers are now used only as a doorbell to kick
off messages. Same goes for any command result, the AP has to
pick it up from the payload area.
- SCP Boot Protocol
- The BL3-0 image is now expected to embed a checksum. This
checksum must be passed to the SCP, which uses it to check the
integrity of the image it received.
- The BL3-0 image used to be transferred a block (4KB)
at a time. The SCP now supports receiving up to 128KB at a
time, which is more than the size of the BL3-0 image.
Therefore, the image is now sent in one go.
- The command IDs have changed.
- SCPI Protocol
- The size of the SCPI payload has been reduced down from 512
bytes to 256 bytes. This changes the base address of the
AP-to-SCP payload area.
- For commands that have a response, the response is the same SCPI
header that was sent, except for the size and the status, which
both must be updated appropriately. Success/Failure of a command
is determined by looking at the updated status code.
- Some command IDs have changed.
NOTE: THIS PATCH BREAKS COMPATIBILITY WITH FORMER VERSIONS OF THE SCP
FIRMWARE AND THUS REQUIRES AN UPDATE OF THIS BINARY. THE LATEST SCP
BINARY CAN BE OBTAINED FROM THE ARM CONNECTED COMMUNITY WEBSITE.
Change-Id: Ia5f6b95fe32401ee04a3805035748e8ef6718da7
This major change pulls out the common functionality from the
FVP and Juno platform ports into the following categories:
* (include/)plat/common. Common platform porting functionality that
typically may be used by all platforms.
* (include/)plat/arm/common. Common platform porting functionality
that may be used by all ARM standard platforms. This includes all
ARM development platforms like FVP and Juno but may also include
non-ARM-owned platforms.
* (include/)plat/arm/board/common. Common platform porting
functionality for ARM development platforms at the board
(off SoC) level.
* (include/)plat/arm/css/common. Common platform porting
functionality at the ARM Compute SubSystem (CSS) level. Juno
is an example of a CSS-based platform.
* (include/)plat/arm/soc/common. Common platform porting
functionality at the ARM SoC level, which is not already defined
at the ARM CSS level.
No guarantees are made about the backward compatibility of
functionality provided in (include/)plat/arm.
Also remove any unnecessary variation between the ARM development
platform ports, including:
* Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
Juno implementation, which copies the information from BL2 memory
instead of expecting it to persist in shared memory.
* Unify the TZC configuration. There is no need to add a region
for SCP in Juno; it's enough to simply not allow any access to
this reserved region. Also set region 0 to provide no access by
default instead of assuming this is the case.
* Unify the number of memory map regions required for ARM
development platforms, although the actual ranges mapped for each
platform may be different. For the FVP port, this reduces the
mapped peripheral address space.
These latter changes will only be observed when the platform ports
are migrated to use the new common platform code in subsequent
patches.
Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8