This library can be used in other projects. All comments that talk about
the Trusted Firmware should be talking about the library itself.
Change-Id: I3b98d42f7132be72c1f8a4900acfaa78dbd2daa2
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This allows other parts of the code to reuse it. No functional changes.
Change-Id: Ib052ae235c422d9179958bd3016c3e678779ae9b
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Most registers are 64-bit wide, even in AArch32 mode:
- MAIR_ELx is equivalent to MAIR0 and MAIR1.
- TTBR is 64 bit in both AArch64 and AArch32.
The only difference is the TCR register, which is 32 bit in AArch32 and
in EL3 in AArch64. For consistency with the rest of ELs in AArch64, it
makes sense to also have it as a 64-bit value.
Change-Id: I2274d66a28876702e7085df5f8aad0e7ec139da9
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The Exception Level is now detected at runtime. This means that it is not
needed to hardcode the EL used by each image.
This doesn't result in a substantial increase of the image size because
the initialization functions that aren't used are garbage-collected by
the linker.
In AArch32 the current EL has been changed from EL3 to EL1 because the
the AArch32 PL1&0 translation regime behaves more like the AArch64 EL1&0
translation regime than the EL3 one.
Change-Id: I941404299ebe7666ca17619207c923b49a55cb73
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
xlat_arch_tlbi_va_regime() isn't used, so it has been renamed to
xlat_arch_tlbi_va() and the previous implementation has been removed.
Change-Id: Ic118bed3fb68234748d86b2e9e95b25650289276
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
They only contained one function that is easily integrated in the private
library header and the existing architectural C files.
This also helps making the library more portable, as the Makefile of the
library now doesn't use the variable INCLUDES, which is specific to this
codebase and doesn't respect the namespace of the library.
Change-Id: I22228e6a97e9b4f346f5cd8947609263e8df71d8
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Check_vector_size checks if the size of the vector fits
in the size reserved for it. This check creates problems in
the Clang assembler. A new macro, end_vector_entry, is added
and check_vector_size is deprecated.
This new macro fills the current exception vector until the next
exception vector. If the size of the current vector is bigger
than 32 instructions then it gives an error.
Change-Id: Ie8545cf1003a1e31656a1018dd6b4c28a4eaf671
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
Rule 8.3: All declarations of an object or function shall
use the same names and type qualifiers.
Fixed for:
make DEBUG=1 PLAT=juno ARCH=aarch32 AARCH32_SP=sp_min RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
Change-Id: Ia34f5155e1cdb67161191f69e8d1248cbaa39e1a
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
It is useful to have LOG_LEVEL_VERBOSE because it prints the memory map
of each image, but that also means that the change_mem_attributes and
get_mem_attributes functions have verbose prints, and generate a too
long text output that hides other useful information.
As they were mostly there for debug purposes, this patch removes them.
Change-Id: I2986537377d1f78be2b79cc8a6cf230c380bdb55
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The previous debug output for EL1&0 translation regimes was too verbose,
which makes it hard to read and hides the intent behind the parameters
assigned to each region. This patch simplifies this output and makes the
outputs for EL3 and EL1&0 mostly the same. The difference is that in
EL1&0 it is specified whether the region is exclusively accessible from
EL1 (PRIV) or both EL0 and EL1 (USER).
For example:
MEM-RW(PRIV)-NOACCESS(USER)-XN(PRIV)-XN(USER)-S
MEM-RO(PRIV)-NOACCESS(USER)-EXEC(PRIV)-EXEC(USER)-S
After the change, it becomes this:
MEM-RW-XN-PRIV-S
MEM-RO-EXEC-PRIV-S
Change-Id: I15f4b99058429d42107fbf89e15f4838a9b559a5
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Instead of having one big file with all the code, it's better to have
a few smaller files that are more manageable:
- xlat_tables_core.c: Code related to the core functionality of the
library (map and unmap regions, initialize xlat context).
- xlat_tables_context.c: Instantiation of the active image context
as well as APIs to manipulate it.
- xlat_tables_utils.c: Helper code that isn't part of the core
functionality (change attributes, debug print messages).
Change-Id: I3ea956fc1afd7473c0bb5e7c6aab3b2e5d88c711
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Having an active stack while enabling MMU has shown coherency problems.
This patch builds on top of translation library changes that introduces
MMU-enabling without using stacks.
Previously, with HW_ASSISTED_COHERENCY, data caches were disabled while
enabling MMU only because of active stack. Now that we can enable MMU
without using stack, we can enable both MMU and data caches at the same
time.
NOTE: Since this feature depends on using translation table library v2,
disallow using translation table library v1 with HW_ASSISTED_COHERENCY.
FixesARM-software/tf-issues#566
Change-Id: Ie55aba0c23ee9c5109eb3454cb8fa45d74f8bbb2
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
An earlier patch split MMU-enabling function for translation library v2.
Although we don't intend to introduce the exact same functionality for
xlat v1, this patch introduces stubs for directly enabling MMU to
maintain API-compatibility.
Change-Id: Id7d56e124c80af71de999fcda10f1734b50bca97
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
At present, the function provided by the translation library to enable
MMU constructs appropriate values for translation library, and programs
them to the right registers. The construction of initial values,
however, is only required once as both the primary and secondaries
program the same values.
Additionally, the MMU-enabling function is written in C, which means
there's an active stack at the time of enabling MMU. On some systems,
like Arm DynamIQ, having active stack while enabling MMU during warm
boot might lead to coherency problems.
This patch addresses both the above problems by:
- Splitting the MMU-enabling function into two: one that sets up
values to be programmed into the registers, and another one that
takes the pre-computed values and writes to the appropriate
registers. With this, the primary effectively calls both functions
to have the MMU enabled, but secondaries only need to call the
latter.
- Rewriting the function that enables MMU in assembly so that it
doesn't use stack.
This patch fixes a bunch of MISRA issues on the way.
Change-Id: I0faca97263a970ffe765f0e731a1417e43fbfc45
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The values defined in this type are used in logical operations, which
goes against MISRA Rule 10.1: "Operands shall not be of an inappropriate
essential type".
Now, `unsigned int` is used instead. This also allows us to move the
dynamic mapping bit from 30 to 31. It was an undefined behaviour in the
past because an enum is signed by default, and bit 31 corresponds to the
sign bit. It is undefined behaviour to modify the sign bit. Now, bit 31
is free to use as it was originally meant to be.
mmap_attr_t is now defined as an `unsigned int` for backwards
compatibility.
Change-Id: I6b31218c14b9c7fdabebe432de7fae6e90a97f34
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This patch introduces setjmp() and ongjmp() primitives to enable
standard setjmp/longjmp style execution. Both APIs parameters take a
pointer to struct jmpbuf type, which hosts CPU registers saved/restored
during jump.
As per the standard usage:
- setjmp() return 0 when a jump is setup; and a non-zero value when
returning from jump.
- The caller of setjmp() must not return, or otherwise update stack
pointer since.
Change-Id: I4af1d32e490cfa547979631b762b4cba188d0551
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The XN, PXN and UXN bits are part of the upper attributes, not the
lower attributes.
Change-Id: Ia5e83f06f2a8de88b551f55f1d36d694918ccbc0
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The issue can occur if end_va is equal to the max architecture address,
and when mm_cursor point to the last entry of mmap_region_t table: {0}.
The first line of the while will then be true, e.g. on AARCH32, we have:
mm_cursor->base_va (=0) + mm_cursor->size (=0) - 1 == end_va (=0xFFFFFFFF)
And the mm_cursor->size = 0 will be lesser than mm->size
A check on mm_cursor->size != 0 should be done as in the previous while,
to avoid such kind of infinite loop.
fixesarm-software/tf-issues#594
Signed-off-by: Yann Gautier <yann.gautier@st.com>
The function xlat_arch_is_granule_size_supported() can be used to check
if a specific granule size is supported. In Armv8, AArch32 only supports
4 KiB pages. AArch64 supports 4 KiB, 16 KiB or 64 KiB depending on the
implementation, which is detected at runtime.
The function xlat_arch_get_max_supported_granule_size() returns the max
granule size supported by the implementation.
Even though right now they are only used by SPM, they may be useful in
other places in the future. This patch moves the code currently in SPM
to the xlat tables lib so that it can be reused.
Change-Id: If54624a5ecf20b9b9b7f38861b56383a03bbc8a4
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Rule 5.7: A tag name shall be a unique identifier
Follow convention of shorter names for smaller scope to fix
violations of MISRA rule 5.7
Fixed For:
make ARM_TSP_RAM_LOCATION=tdram LOG_LEVEL=50 PLAT=fvp SPD=opteed
Change-Id: I5fbb5d6ebddf169550eddb07ed880f5c8076bb76
Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
Rule 5.7: A tag name shall be a unique identifier
There were 2 amu_ctx struct type definitions:
- In lib/extensions/amu/aarch64/amu.c
- In lib/cpus/aarch64/cpuamu.c
Renamed the latter to cpuamu_ctx to avoid this name clash
To avoid violation of Rule 8.3 also change name of function
amu_ctxs to unique name (cpuamu_ctxs) since it now returns a
different type (cpuamu_ctx) than the other amu_ctxs function
Fixed for:
make LOG_LEVEL=50 PLAT=fvp
Change-Id: Ieeb7e390ec2900fd8b775bef312eda93804a43ed
Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
Use a _ prefix for macro arguments to prevent that argument from
hiding variables of the same name in the outer scope
Rule 5.3: An identifier declared in an inner scope shall not
hide an identifier declared in an outer scope
Fixed For:
make PLAT=fvp USE_COHERENT_MEM=0
Change-Id: If50c583d3b63799ee6852626b15be00c0f6b10a0
Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
Use a _ prefix for Macro arguments to prevent that argument from
hiding variables of the same name in the outer scope
Rule 5.3: An identifier declared in an inner scope shall not
hide an identifier declared in an outer scope
Fixed For:
make LOG_LEVEL=50 PLAT=fvp
Change-Id: I67b6b05cbad4aeca65ce52981b4679b340604708
Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
Rule 21.15: The pointer arguments to the Standard Library functions
memcpy, memmove and memcmp shall be pointers to qualified or unqualified
versions of compatible types.
Basically that means that both pointer arguments must be of the same
type. However, even if the pointers passed as arguments to the above
functions are of the same type, Coverity still thinks it's a violation
if we do pointer arithmetics directly at the function call. Thus the
pointer arithmetic operations were moved outside of the function
argument.
First detected on the following configuration
make PLAT=fvp LOG_LEVEL=50
Change-Id: I8b912ec1bfa6f2d60857cb1bd453981fd7001b94
Signed-off-by: John Tsichritzis <john.tsichritzis@arm.com>
The Cortex-A76 implements SMCCC_ARCH_WORKAROUND_2 as defined in
"Firmware interfaces for mitigating cache speculation vulnerabilities
System Software on Arm Systems"[0].
Dynamic mitigation for CVE-2018-3639 is enabled/disabled by
setting/clearning bit 16 (Disable load pass store) of `CPUACTLR2_EL1`.
NOTE: The generic code that implements dynamic mitigation does not
currently implement the expected semantics when dispatching an SDEI
event to a lower EL. This will be fixed in a separate patch.
[0] https://developer.arm.com/cache-speculation-vulnerability-firmware-specification
Change-Id: I8fb2862b9ab24d55a0e9693e48e8be4df32afb5a
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The workaround uses the instruction patching feature of the Ares cpu.
Change-Id: I868fce0dc0e8e41853dcce311f01ee3867aabb59
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Both Cortex-Ares and Cortex-A76 CPUs use the ARM DynamIQ Shared Unit
(DSU). The power-down and power-up sequences are therefore mostly
managed in hardware, and required software operations are simple.
Change-Id: I3a9447b5bdbdbc5ed845b20f6564d086516fa161
Signed-off-by: Isla Mitchell <isla.mitchell@arm.com>
When SMCCC_ARCH_WORKAROUND_1 is invoked from a lower EL running in
AArch32 state, ensure that the SMC call will take a shortcut in EL3.
This minimizes the time it takes to apply the mitigation in EL3.
When lower ELs run in AArch32, it is preferred that they execute the
`BPIALL` instruction to invalidate the BTB. However, on some cores
the `BPIALL` instruction may be a no-op and thus would benefit from
making the SMCCC_ARCH_WORKAROUND_1 call go through the fast path.
Change-Id: Ia38abd92efe2c4b4a8efa7b70f260e43c5bda8a5
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
This function can be currently accessed through the wrappers
cm_init_context_by_index() and cm_init_my_context(). However, they only
work on contexts that are associated to a CPU.
By making this function public, it is possible to set up a context that
isn't associated to any CPU. For consistency, it has been renamed to
cm_setup_context().
Change-Id: Ib2146105abc8137bab08745a8adb30ca2c4cedf4
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Some CPUS may benefit from using a dynamic mitigation approach for
CVE-2018-3639. A new SMC interface is defined to allow software
executing in lower ELs to enable or disable the mitigation for their
execution context.
It should be noted that regardless of the state of the mitigation for
lower ELs, code executing in EL3 is always mitigated against
CVE-2018-3639.
NOTE: This change is a compatibility break for any platform using
the declare_cpu_ops_workaround_cve_2017_5715 macro. Migrate to
the declare_cpu_ops_wa macro instead.
Change-Id: I3509a9337ad217bbd96de9f380c4ff8bf7917013
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
For affected CPUs, this approach enables the mitigation during EL3
initialization, following every PE reset. No mechanism is provided to
disable the mitigation at runtime.
This approach permanently mitigates the entire software stack and no
additional mitigation code is required in other software components.
TF-A implements this approach for the following affected CPUs:
* Cortex-A57 and Cortex-A72, by setting bit 55 (Disable load pass store) of
`CPUACTLR_EL1` (`S3_1_C15_C2_0`).
* Cortex-A73, by setting bit 3 of `S3_0_C15_C0_0` (not documented in the
Technical Reference Manual (TRM)).
* Cortex-A75, by setting bit 35 (reserved in TRM) of `CPUACTLR_EL1`
(`S3_0_C15_C1_0`).
Additionally, a new SMC interface is implemented to allow software
executing in lower ELs to discover whether the system is mitigated
against CVE-2018-3639.
Refer to "Firmware interfaces for mitigating cache speculation
vulnerabilities System Software on Arm Systems"[0] for more
information.
[0] https://developer.arm.com/cache-speculation-vulnerability-firmware-specification
Change-Id: I084aa7c3bc7c26bf2df2248301270f77bed22ceb
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
This patch renames symbols and files relating to CVE-2017-5715 to make
it easier to introduce new symbols and files for new CVE mitigations.
Change-Id: I24c23822862ca73648c772885f1690bed043dbc7
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Flush the indirect branch predictor and RSB on entry to EL3 by issuing
a newly added instruction for Denver CPUs. Support for this operation
can be determined by comparing bits 19:16 of ID_AFR0_EL1 with 0b0001.
To achieve this without performing any branch instruction, a per-cpu
vbar is installed which executes the workaround and then branches off
to the corresponding vector entry in the main vector table. A side
effect of this change is that the main vbar is configured before any
reset handling. This is to allow the per-cpu reset function to override
the vbar setting.
Change-Id: Ief493cd85935bab3cfee0397e856db5101bc8011
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
The context management library initialises the CPU context for the
secure/non-secure worlds to zero. This leads to zeros being stored
to the actual registers when we restore the CPU context, during a
world switch. Denver CPUs dont expect zero to be written to the
implementation defined, actlr_el1 register, at any point of time.
Writing a zero to some fields of this register, results in an
UNDEFINED exception.
This patch bases the context actlr_el1 value on the actual hardware
register, to maintain parity with the expected settings
Change-Id: I1c806d7ff12daa7fd1e5c72825494b81454948f2
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
Using variables as format strings can generate security problems when
the user can control those strings. Some compilers generate warnings
in that cases, even when the variables are constants and are not
controlled by the user.
Change-Id: I65dee1d1b66feab38cbf298290a86fa56e6cca40
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
The ARMv8.4 RAS extensions introduce architectural support for software
to inject faults into the system in order to test fault-handling
software. This patch introduces the build option FAULT_HANDLING_SUPPORT
to allow for lower ELs to use registers in the Standard Error Record to
inject fault. The build option RAS_EXTENSIONS must also be enabled along
with fault injection.
This feature is intended for testing purposes only, and is advisable to
keep disabled for production images.
Change-Id: I6f7a4454b15aec098f9505a10eb188c2f928f7ea
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
EHF currently allows for registering interrupt handlers for a defined
priority ranges. This is primarily targeted at various EL3 dispatchers
to own ranges of secure interrupt priorities in order to delegate
execution to lower ELs.
The RAS support added by earlier patches necessitates registering
handlers based on interrupt number so that error handling agents shall
receive and handle specific Error Recovery or Fault Handling interrupts
at EL3.
This patch introduces a macro, RAS_INTERRUPTS() to declare an array of
interrupt numbers and handlers. Error handling agents can use this macro
to register handlers for individual RAS interrupts. The array is
expected to be sorted in the increasing order of interrupt numbers.
As part of RAS initialisation, the list of all RAS interrupts are sorted
based on their ID so that, given an interrupt, its handler can be looked
up with a simple binary search.
For an error handling agent that wants to handle a RAS interrupt,
platform must:
- Define PLAT_RAS_PRI to be the priority of all RAS exceptions.
- Enumerate interrupts to have the GIC driver program individual EL3
interrupts to the required priority range. This is required by EHF
even before this patch.
Documentation to follow.
Change-Id: I9471e4887ff541f8a7a63309e9cd8f771f76aeda
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Previous patches added frameworks for handling RAS errors. This patch
introduces features that the platform can use to enumerate and iterate
RAS nodes:
- The REGISTER_RAS_NODES() can be used to expose an array of
ras_node_info_t structures. Each ras_node_info_t describes a RAS
node, along with handlers for probing the node for error, and if
did record an error, another handler to handle it.
- The macro for_each_ras_node() can be used to iterate over the
registered RAS nodes, probe for, and handle any errors.
The common platform EA handler has been amended using error handling
primitives introduced by both this and previous patches.
Change-Id: I2e13f65a88357bc48cd97d608db6c541fad73853
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The ARMv8 RAS Extensions introduced Standard Error Records which are a
set of standard registers through which:
- Platform can configure RAS node policy; e.g., notification
mechanism;
- RAS nodes can record and expose error information for error handling
agents.
Standard Error Records can either be accessed via. memory-mapped
or System registers. This patch adds helper functions to access
registers and fields within an error record.
Change-Id: I6594ba799f4a1789d7b1e45b3e17fd40e7e0ba5c
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
RAS extensions are mandatory for ARMv8.2 CPUs, but are also optional
extensions to base ARMv8.0 architecture.
This patch adds build system support to enable RAS features in ARM
Trusted Firmware. A boolean build option RAS_EXTENSION is introduced for
this.
With RAS_EXTENSION, an Exception Synchronization Barrier (ESB) is
inserted at all EL3 vector entry and exit. ESBs will synchronize pending
external aborts before entering EL3, and therefore will contain and
attribute errors to lower EL execution. Any errors thus synchronized are
detected via. DISR_EL1 register.
When RAS_EXTENSION is set to 1, HANDLE_EL3_EA_FIRST must also be set to 1.
Change-Id: I38a19d84014d4d8af688bd81d61ba582c039383a
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
At present, the function that restores general purpose registers also
does ERET. Refactor the restore code to restore general purpose
registers without ERET to complement the save function.
The macro save_x18_to_x29_sp_el0 was used only once, and is therefore
removed, and its contents expanded inline for readability.
No functional changes, but with this patch:
- The SMC return path will incur an branch-return and an additional
register load.
- The unknown SMC path restores registers x0 to x3.
Change-Id: I7a1a63e17f34f9cde810685d70a0ad13ca3b7c50
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
In AArch64, the field ID_AA64MMFR0_EL1.PARange has a different set of
allowed values depending on the architecture version.
Previously, we only compiled the Trusted Firmware with the values that
were allowed by the architecture. However, given that this field is
read-only, it is easier to compile the code with all values regardless
of the target architecture.
Change-Id: I57597ed103dd0189b1fb738a9ec5497391c10dd1
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Previously mem_protect used to be only supported from BL2. This is not
helpful in the case when ARM TF-A BL2 is not used. This patch demonstrates
mem_protect from el3_runtime firmware on ARM Platforms specifically
when RESET_TO_BL31 or RESET_TO_SP_MIN flag is set as BL2 may be absent
in these cases. The Non secure DRAM is dynamically mapped into EL3 mmap
tables temporarily and then the protected regions are then cleared. This
avoids the need to map the non secure DRAM permanently to BL31/sp_min.
The stack size is also increased, because DYNAMIC_XLAT_TABLES require
a bigger stack.
Change-Id: Ia44c594192ed5c5adc596c0cff2c7cc18c001fde
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
According to the ARMv8 ARM issue C.a:
AP[1] is valid only for stage 1 of a translation regime that can
support two VA ranges. It is RES 1 when stage 1 translations can
support only one VA range.
This means that, even though this bit is ignored, it should be set to 1
in the EL3 and EL2 translation regimes.
For translation regimes consisting on EL0 and a higher regime this bit
selects between control at EL0 or at the higher Exception level. The
regimes that support two VA ranges are EL1&0 and EL2&0 (the later one
is only available since ARMv8.1).
This fix has to be applied to both versions of the translation tables
library.
Change-Id: If19aaf588551bac7aeb6e9a686cf0c2068e7c181
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>