Remove the 'NEED_BL32' flag from the makefile. TLK compiles using a
completely different build system and is present on the device as a
binary blob. The NEED_BL32 flag does not influence the TLK load/boot
sequence at all. Moreover, it expects that TLK binary be present on
the host before we can compile BL31 support for Tegra.
This patch removes the flag from the makefile and thus decouples both
the build systems.
Tested by booting TLK without the NEED_BL32 flag.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This patch adds support for SYSTEM_SUSPEND API as mentioned in the PSCI 1.0
specification. This API, on being invoked on the last running core on a
supported platform, will put the system into a low power mode with memory
retention.
The psci_afflvl_suspend() internal API has been reused as most of the actions
to suspend a system are the same as invoking the PSCI CPU_SUSPEND API with the
target affinity level as 'system'. This API needs the 'power state' parameter
for the target low power state. This parameter is not passed by the caller of
the SYSTEM_SUSPEND API. Hence, the platform needs to implement the
get_sys_suspend_power_state() platform function to provide this information.
Also, the platform also needs to add support for suspending the system to the
existing 'plat_pm_ops' functions: affinst_suspend() and
affinst_suspend_finish().
Change-Id: Ib6bf10809cb4e9b92f463755608889aedd83cef5
mpidr_set_aff_inst() is left shifting an int constant and an
unsigned char value to construct an MPIDR. For affinity level 3 a
shift of 32 would result in shifting out of the 32-bit type and
have no effect on the MPIDR.
These values need to be extended to unsigned long before shifting
to ensure correct results for affinity level 3.
Change-Id: I1ef40afea535f14cfd820c347a065a228e8f4536
This patch introduces a new platform build option, called
PROGRAMMABLE_RESET_ADDRESS, which tells whether the platform has
a programmable or fixed reset vector address.
If the reset vector address is fixed then the code relies on the
platform_get_entrypoint() mailbox mechanism to figure out where
it is supposed to jump. On the other hand, if it is programmable
then it is assumed that the platform code will program directly
the right address into the RVBAR register (instead of using the
mailbox redirection) so the mailbox is ignored in this case.
Change-Id: If59c3b11fb1f692976e1d8b96c7e2da0ebfba308
The attempt to run the CPU reset code as soon as possible after reset
results in highly complex conditional code relating to the
RESET_TO_BL31 option.
This patch relaxes this requirement a little. In the BL1, BL3-1 and
PSCI entrypoints code, the sequence of operations is now as follows:
1) Detect whether it is a cold or warm boot;
2) For cold boot, detect whether it is the primary or a secondary
CPU. This is needed to handle multiple CPUs entering cold reset
simultaneously;
3) Run the CPU init code.
This patch also abstracts the EL3 registers initialisation done by
the BL1, BL3-1 and PSCI entrypoints into common code.
This improves code re-use and consolidates the code flows for
different types of systems.
NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO
NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE
FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION.
OTHERWISE, SECONDARY CPUS WILL PANIC.
Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
In the debug build of the function get_power_on_target_afflvl(), there is a
check to ensure that the CPU is emerging from a SUSPEND or ON_PENDING state.
The state is checked without acquiring the lock for the CPU node. The state
could be updated to ON_PENDING in psci_afflvl_on() after the target CPU has
been powered up. This results in a race condition which could cause the
check for the ON_PENDING state in get_power_on_target_afflvl() to fail.
This patch resolves this race condition by setting the state of the target
CPU to ON_PENDING before the platform port attempts to power it on. The
target CPU is thus guaranteed to read the correct the state. In case
the power on operation fails, the state of the CPU is restored to OFF.
FixesARM-software/tf-issues#302
Change-Id: I3f2306a78c58d47b1a0fb7e33ab04f917a2d5044
This patch removes the need for a shared buffer between the EL3 and S-EL1
levels. We now use the CPU registers, x0-x7, while passing data between
the two levels. Since TLK is a 32-bit Trusted OS, tlkd has to unpack the
arguments in the x0-x7 registers. TLK in turn gets these values via r0-r7.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
In order for the symbol table in the ELF file to contain the size of
functions written in assembly, it is necessary to report it to the
assembler using the .size directive.
To fulfil the above requirements, this patch introduces an 'endfunc'
macro which contains the .endfunc and .size directives. It also adds
a .func directive to the 'func' assembler macro.
The .func/.endfunc have been used so the assembler can fail if
endfunc is omitted.
FixesARM-Software/tf-issues#295
Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc
Signed-off-by: Kévin Petit <kevin.petit@arm.com>
This patch adds support to open/close secure sessions with Trusted
Apps and later send commands/events. Modify TLK_NUM_FID to indicate
the total number of FIDs available to the NS world.
Change-Id: I3f1153dfa5510bd44fc25f1fee85cae475b1abf1
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This patch allows servicing of the non-secure world IRQs when the
CPU is in the secure world. Once the interrupt is handled, the
non-secure world issues the Resume FID to allow the secure payload
complete the preempted standard FID.
Change-Id: Ia52c41adf45014ab51d8447bed6605ca2f935587
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This patch adds functionality to translate virtual addresses from
secure or non-secure worlds. This functionality helps Trusted Apps
to share virtual addresses directly and allows the NS world to
pass virtual addresses to TLK directly.
Change-Id: I77b0892963e0e839c448b5d0532920fb7e54dc8e
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
This patch registers NS memory buffer with the secure payload using
two different functions IDs - REGISTER_LOGBUF, REGISTER_REQBUF.
a. The SP uses the log-buffer to store its activity logs, in a
pre-decided format. This helps in debugging secure payload's issues.
b. The SP uses the req-buffer to get the parameters required by
sessions with Trusted Applications.
Change-Id: I6b0247cf7790524132ee0da24f1f35b1fccec5d5
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
TLK Dispatcher (tlkd) is based on the tspd and is the glue required
to run TLK as a Secure Payload with the Trusted Firmware.
Change-Id: I69e573d26d52342eb049feef773dd7d2a506f4ab
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
The cpu-ops pointer was initialized before enabling the data cache in the cold
and warm boot paths. This required a DCIVAC cache maintenance operation to
invalidate any stale cache lines resident in other cpus.
This patch moves this initialization to the bl31_arch_setup() function
which is always called after the data cache and MMU has been enabled.
This change removes the need:
1. for the DCIVAC cache maintenance operation.
2. to initialise the CPU ops upon resumption from a PSCI CPU_SUSPEND
call since memory contents are always preserved in this case.
Change-Id: Ibb2fa2f7460d1a1f1e721242025e382734c204c6
All coding style violations have been fixed in a previous patch and
since then, each individual patch has been checked in this regard.
However, the latest version of the checkpatch.pl script from the Linux
kernel is more advanced and it is able to flag new errors in the
Trusted Firmware codebase. This patch fixes them.
Change-Id: I1f332f2440984be85d36b231bb83260368987077
This patch removes the plat_get_max_afflvl() platform API
and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL.
This is done because the maximum affinity level for a platform
is a static value and it is more efficient for it to be defined
as a platform macro.
NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT
FixesARM-Software/tf-issues#265
Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
This patch adds support to call the reset_handler() function in BL3-1 in the
cold and warm boot paths when another Boot ROM reset_handler() has already run.
This means the BL1 and BL3-1 versions of the CPU and platform specific reset
handlers may execute different code to each other. This enables a developer to
perform additional actions or undo actions already performed during the first
call of the reset handlers e.g. apply additional errata workarounds.
Typically, the reset handler will be first called from the BL1 Boot ROM. Any
additional functionality can be added to the reset handler when it is called
from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used
to identify whether this is the first version of the reset handler code to be
executed or an overridden version of the code.
The Cortex-A57 errata workarounds are applied only if they have not already been
applied.
FixesARM-software/tf-issue#275
Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
This patch provides an option to specify a interrupt routing model
where non-secure interrupts (IRQs) are routed to EL3 instead of S-EL1.
When such an interrupt occurs, the TSPD arranges a return to
the normal world after saving any necessary context. The interrupt
routing model to route IRQs to EL3 is enabled only during STD SMC
processing. Thus the pre-emption of S-EL1 is disabled during Fast SMC
and Secure Interrupt processing.
A new build option TSPD_ROUTE_NS_INT_EL3 is introduced to change
the non secure interrupt target execution level to EL3.
FixesARM-software/tf-issues#225
Change-Id: Ia1e779fbbb6d627091e665c73fa6315637cfdd32
This patch implements conditional checks in psci_smc_handler() to verify
that the psci function invoked by the caller is supported by the platform
or SPD implementation. The level of support is saved in the 'psci_caps'
variable. This check allows the PSCI implementation to return an error
early.
As a result of the above verification, the checks performed within the psci
handlers for the pm hooks are now removed and replaced with assertions.
Change-Id: I9b5b646a01d8566dc28c4d77dd3aa54e9bf3981a
This patch implements the PSCI_FEATURES function which is a mandatory
API in the PSCI 1.0 specification. A capability variable is
constructed during initialization by examining the plat_pm_ops and
spd_pm_ops exported by the platform and the Secure Payload Dispatcher.
This is used by the PSCI FEATURES function to determine which
PSCI APIs are supported by the platform.
Change-Id: I147ffc1bd5d90b469bd3cc4bbe0a20e95c247df7
This patch reworks the PSCI MIGRATE, MIGRATE_INFO_TYPE and
MIGRATE_INFO_UP_CPU support for Trusted Firmware. The
implementation does the appropriate validation of parameters
and invokes the appropriate hook exported by the SPD.
The TSP is a MP Trusted OS. Hence the ability to actually
migrate a Trusted OS has not been implemented. The
corresponding function is not populated in the spd_pm_hooks
structure for the TSPD.
The `spd_pm_ops_t` has undergone changes with this patch.
SPD PORTS MAY NEED TO BE UPDATED.
FixesARM-software/tf-issues#249
Change-Id: Iabd87521bf7c530a5e4506b6d3bfd4f1bf87604f
This patch adds support to return SUCCESS if a pending interrupt is
detected during a CPU_SUSPEND call to a power down state. The check
is performed as late as possible without losing the ability to return
to the caller. This reduces the overhead incurred by a CPU in
undergoing a complete power cycle when a wakeup interrupt is already
pending.
FixesARM-Software/tf-issues#102
Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
This patch allows the platform to validate the power_state and
entrypoint information from the normal world early on in PSCI
calls so that we can return the error safely. New optional
pm_ops hooks `validate_power_state` and `validate_ns_entrypoint`
are introduced to do this.
As a result of these changes, all the other pm_ops handlers except
the PSCI_ON handler are expected to be successful. Also, the PSCI
implementation will now assert if a PSCI API is invoked without the
corresponding pm_ops handler being registered by the platform.
NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The
pm hooks have 2 additional optional callbacks and the return type
of the other hooks have changed.
FixesARM-Software/tf-issues#229
Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
This patch adds support to save the "power state" parameter before the
affinity level specific handlers are called in a CPU_SUSPEND call.
This avoids the need to pass the power_state as a parameter to the
handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops.
The power_state arguments in the spd_pm_ops operations are now reserved
and must not be used. The SPD can query the relevant power_state fields
by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs.
NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE
PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE.
Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
This patch replaces the internal psci_save_ns_entry() API with a
psci_get_ns_ep_info() API. The new function splits the work done by the
previous one such that it populates and returns an 'entry_point_info_t'
structure with the information to enter the normal world upon completion
of the CPU_SUSPEND or CPU_ON call. This information is used to populate
the non-secure context structure separately.
This allows the new internal API `psci_get_ns_ep_info` to return error
and enable the code to return safely.
Change-Id: Ifd87430a4a3168eac0ebac712f59c93cbad1b231
This patch moves the check for valid CPU state during
PSCI_CPU_ON to before the non secure entry point is programmed
so as to enable it to return early on error.
Change-Id: I1b1a21be421e2b2a6e33db236e91dee8688efffa
This patch removes the non-secure entry point information being passed
to the platform pm_ops which is not needed. Also, it removes the `mpidr`
parameter for platform pm hooks which are meant to do power management
operations only on the current cpu.
NOTE: PLATFORM PORTS MUST BE UPDATED AFTER MERGING THIS COMMIT.
Change-Id: If632376a990b7f3b355f910e78771884bf6b12e7
This patch extends the build option `USE_COHERENT_MEMORY` to
conditionally remove coherent memory from the memory maps of
all boot loader stages. The patch also adds necessary
documentation for coherent memory removal in firmware-design,
porting and user guides.
FixesARM-Software/tf-issues#106
Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
This patch moves the bakery locks out of coherent memory to normal memory.
This implies that the lock information needs to be placed on a separate cache
line for each cpu. Hence the bakery_lock_info_t structure is allocated in the
per-cpu data so as to minimize memory wastage. A similar platform per-cpu
data is introduced for the platform locks.
As a result of the above changes, the bakery lock api is completely changed.
Earlier, a reference to the lock structure was passed to the lock implementation.
Now a unique-id (essentially an index into the per-cpu data array) and an offset
into the per-cpu data for bakery_info_t needs to be passed to the lock
implementation.
Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
This patch fixes a crash due to corruption of cpu_ops
data structure. During the secondary CPU boot, after the
cpu_ops has been initialized in the per cpu-data, the
dcache lines need to invalidated so that the update in
memory can be seen later on when the dcaches are turned ON.
Also, after initializing the psci per cpu data, the dcache
lines are flushed so that they are written back to memory
and dirty dcache lines are avoided.
FixesARM-Software/tf-issues#271
Change-Id: Ia90f55e9882690ead61226eea5a5a9146d35f313
This patch fixes the assertion failure when CPU_SUSPEND is invoked with
an affinity level higher than supported by the platform by adding suitable
checks for affinity level within `psci_cpu_suspend`. Also added suitable
bound checks within `psci_aff_map_get_idx` to prevent indexing beyond array
limits.
FixesARM-software/tf-issues#260
Change-Id: I04b75c49729e6c6d1983add590f60146c8fc3630
This patch fixes the array size of mpidr_aff_map_nodes_t which
was less by one element.
FixesARM-software/tf-issues#264
Change-Id: I48264f6f9e7046a3d0f4cbcd63b9ba49657e8818
This patch adds CPU core and cluster power down sequences to the CPU specific
operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and
generic AEM sequences have been added. The latter is suitable for the
Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is
saved in the per-cpu data so that it can be easily accessed during power down
seqeunces.
An optional platform API has been introduced to allow a platform to disable the
Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak
definition of this function (plat_disable_acp()) does not take any action. It
should be overriden with a strong definition if the ACP is present on a
platform.
Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
This patch implements the following cleanups in PSCI generic code:
1. It reworks the affinity level specific handlers in the PSCI implementation
such that.
a. Usage of the 'rc' local variable is restricted to only where it is
absolutely needed
b. 'plat_state' local variable is defined only when a direct invocation of
plat_get_phys_state() does not suffice.
c. If a platform handler is not registered then the level specific handler
returns early.
2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of
arrays of the type instead of using it in function prototypes as well.
3. It removes dangling declarations of __psci_cpu_off() and
__psci_cpu_suspend(). The definitions of these functions were removed in
earlier patches.
Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
This patch adds APIs to find, save and retrieve the highest affinity level which
will enter or exit from the physical OFF state during a PSCI power management
operation. The level is stored in per-cpu data.
It then reworks the PSCI implementation to perform cache maintenance only
when the handler for the highest affinity level to enter/exit the OFF state is
called.
For example. during a CPU_SUSPEND operation, state management is done prior to
calling the affinity level specific handlers. The highest affinity level which
will be turned off is determined using the psci_find_max_phys_off_afflvl()
API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the
code that does generic handling for each level, prior to performing cache
maintenance it is first determined if the current affinity level matches the
value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if
the values match.
This change allows the last CPU in a cluster to perform cache maintenance
independently. Earlier, cache maintenance was started in the level 0 handler and
finished in the level 1 handler. This change in approach will facilitate
implementation of tf-issues#98.
Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
This patch pulls out state management from the affinity level specific handlers
into the top level functions specific to the operation
i.e. psci_afflvl_suspend(), psci_afflvl_on() etc.
In the power down path this patch will allow an affinity instance at level X to
determine the state that an affinity instance at level X+1 will enter before the
level specific handlers are called. This will be useful to determine whether a
CPU is the last in the cluster during a suspend/off request and so on.
Similarly, in the power up path this patch will allow an affinity instance at
level X to determine the state that an affinity instance at level X+1 has
emerged from, even after the level specific handlers have been called. This will
be useful in determining whether a CPU is the first in the cluster during a
on/resume request and so on.
As before, while powering down, state is updated before the level specific
handlers are invoked so that they can perform actions based upon their target
state. While powering up, state is updated after the level specific handlers have
been invoked so that they can perform actions based upon the state they emerged
from.
Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
This patch adds a structure defined by the PSCI service to the per-CPU data
array. The structure is used to save the 'power_state' parameter specified
during a 'cpu_suspend' call on the current CPU. This parameter was being saved
in the cpu node in the PSCI topology tree earlier.
The existing API to return the state id specified during a PSCI CPU_SUSPEND call
i.e. psci_get_suspend_stateid(mpidr) has been renamed to
psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API
returns the state id of the current cpu.
The psci_get_suspend_afflvl() API has been changed to return the target affinity
level of the current CPU. This was specified using the 'mpidr' parameter in the
old implementation.
The behaviour of the get_power_on_target_afflvl() has been tweaked such that
traversal of the PSCI topology tree to locate the affinity instance node for the
current CPU is done only in the debug build as it is an expensive operation.
Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI
operations. A platform should export handlers to complete the
requested operation. The FVP port exports fvp_system_off() and
fvp_system_reset() as an example.
If the SPD provides a power management hook for system off and
system reset, then the SPD is notified about the corresponding
operation so it can do some bookkeeping. The TSPD exports
tspd_system_off() and tspd_system_reset() for that purpose.
Versatile Express shutdown and reset methods have been removed
from the FDT as new PSCI sys_poweroff and sys_reset services
have been added. For those kernels that do not support yet these
PSCI services (i.e. GICv3 kernel), the original dtsi files have
been renamed to *-no_psci.dtsi.
FixesARM-software/tf-issues#218
Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
* Move TSP platform porting functions to new file:
include/bl32/tsp/platform_tsp.h.
* Create new TSP_IRQ_SEC_PHY_TIMER definition for use by the generic
TSP interrupt handling code, instead of depending on the FVP
specific definition IRQ_SEC_PHY_TIMER.
* Rename TSP platform porting functions from bl32_* to tsp_*, and
definitions from BL32_* to TSP_*.
* Update generic TSP code to use new platform porting function names
and definitions.
* Update FVP port accordingly and move all TSP source files to:
plat/fvp/tsp/.
* Update porting guide with above changes.
Note: THIS CHANGE REQUIRES ALL PLATFORM PORTS OF THE TSP TO
BE UPDATED
FixesARM-software/tf-issues#167
Change-Id: Ic0ff8caf72aebb378d378193d2f017599fc6b78f
This patch disables routing of external aborts from lower exception levels to
EL3 and ensures that a SError interrupt generated as a result of execution in
EL3 is taken locally instead of a lower exception level.
The SError interrupt is enabled in the TSP code only when the operation has not
been directly initiated by the normal world. This is to prevent the possibility
of an asynchronous external abort which originated in normal world from being
taken when execution is in S-EL1.
FixesARM-software/tf-issues#153
Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
This patch adds support for BL3-2 initialization by asynchronous
method where BL3-1 transfers control to BL3-2 using world switch.
After BL3-2 initialization, it transfers control to BL3-3 via SPD
service handler. The SPD service handler initializes the CPU context
to BL3-3 entrypoint depending on the return function indentifier from
TSP initialization.
FixesARM-software/TF-issues#184
Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
There is no mechanism which allows the TSPD to specify what SPSR to
use when entering BL3-2 instead of BL3-3. This patch divides the
responsibility between tspd_setup() and tspd_init() for initializing
the TSPD and TSP to support the alternate BL3-2 initialization flow
where BL3-1 handsover control to BL3-2 instead of BL3-3.
SPSR generated by TSPD for TSP is preserved due the new division of
labour which fixes#174.
This patch also moves the cpu_context initialization code from
tspd_setup() to tspd_init() immediately before entering the TSP.
Instead tspd_setup() updates the BL3-2 entrypoint info structure
with the state required for initializing the TSP later.
Fixes ARM-software/TF-issues#174
Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
This patch further optimizes the EL3 register state stored in
cpu_context. The 2 registers which are removed from cpu_context are:
* cntfrq_el0 is the system timer register which is writable
only in EL3 and it can be programmed during cold/warm boot. Hence
it need not be saved to cpu_context.
* cptr_el3 controls access to Trace, Floating-point, and Advanced
SIMD functionality and it is programmed every time during cold
and warm boot. The current BL3-1 implementation does not need to
modify the access controls during normal execution and hence
they are expected to remain static.
FixesARM-software/tf-issues#197
Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
Assert a valid security state using the macro sec_state_is_valid().
Replace assert() with panic() in those cases that might arise
because of runtime errors and not programming errors.
Replace panic() with assert() in those cases that might arise
because of programming errors.
FixesARM-software/tf-issues#96
Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of
SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset
in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in
S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They
do not have to be saved and restored either. The M, WXN and optionally the C
bit are set in the enable_mmu_elX() function. This is done during both the warm
and cold boot paths.
FixesARM-software/tf-issues#226
Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
This patch removes the allocation of memory for coherent stacks, associated
accessor function and some dead code which called the accessor function. It also
updates the porting guide to remove the concept and the motivation behind using
stacks allocated in coherent memory.
FixesARM-software/tf-issues#198
Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
This patch uses stacks allocated in normal memory to enable the MMU early in the
warm boot path thus removing the dependency on stacks allocated in coherent
memory. Necessary cache and stack maintenance is performed when a cpu is being
powered down and up. This avoids any coherency issues that can arise from
reading speculatively fetched stale stack memory from another CPUs cache. These
changes affect the warm boot path in both BL3-1 and BL3-2.
The EL3 system registers responsible for preserving the MMU state are not saved
and restored any longer. Static values are used to program these system
registers when a cpu is powered on or resumed from suspend.
Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
This patch adds a 'flags' parameter to each exception level specific function
responsible for enabling the MMU. At present only a single flag which indicates
whether the data cache should also be enabled is implemented. Subsequent patches
will use this flag when enabling the MMU in the warm boot paths.
Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
Many of the interfaces internal to PSCI pass the current CPU
MPIDR_EL1 value from function to function. This is not required,
and with inline access to the system registers is less efficient
than requiring the code to read that register whenever required.
This patch remove the mpidr parameter from the affected interfaces
and reduces code in FVP BL3-1 size by 160 bytes.
Change-Id: I16120a7c6944de37232016d7e109976540775602