You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

315 lines
7.5 KiB

/*
* Copyright (c) 2016-2021, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>
#include <common/bl_common.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
.globl smc
.globl zeromem
.globl zero_normalmem
.globl memcpy4
.globl disable_mmu_icache_secure
.globl disable_mmu_secure
.globl fixup_gdt_reloc
#define PAGE_START_MASK ~(PAGE_SIZE_MASK)
func smc
/*
* For AArch32 only r0-r3 will be in the registers;
* rest r4-r6 will be pushed on to the stack. So here, we'll
* have to load them from the stack to registers r4-r6 explicitly.
* Clobbers: r4-r6
*/
ldm sp, {r4, r5, r6}
smc #0
endfunc smc
/* -----------------------------------------------------------------------
* void zeromem(void *mem, unsigned int length)
*
* Initialise a region in normal memory to 0. This functions complies with the
* AAPCS and can be called from C code.
*
* -----------------------------------------------------------------------
*/
func zeromem
/*
* Readable names for registers
*
* Registers r0, r1 and r2 are also set by zeromem which
* branches into the fallback path directly, so cursor, length and
* stop_address should not be retargeted to other registers.
*/
cursor .req r0 /* Start address and then current address */
length .req r1 /* Length in bytes of the region to zero out */
/*
* Reusing the r1 register as length is only used at the beginning of
* the function.
*/
stop_address .req r1 /* Address past the last zeroed byte */
zeroreg1 .req r2 /* Source register filled with 0 */
zeroreg2 .req r3 /* Source register filled with 0 */
tmp .req r12 /* Temporary scratch register */
mov zeroreg1, #0
/* stop_address is the address past the last to zero */
add stop_address, cursor, length
/*
* Length cannot be used anymore as it shares the same register with
* stop_address.
*/
.unreq length
/*
* If the start address is already aligned to 8 bytes, skip this loop.
*/
tst cursor, #(8-1)
beq .Lzeromem_8bytes_aligned
/* Calculate the next address aligned to 8 bytes */
orr tmp, cursor, #(8-1)
adds tmp, tmp, #1
/* If it overflows, fallback to byte per byte zeroing */
beq .Lzeromem_1byte_aligned
/* If the next aligned address is after the stop address, fall back */
cmp tmp, stop_address
bhs .Lzeromem_1byte_aligned
/* zero byte per byte */
1:
strb zeroreg1, [cursor], #1
cmp cursor, tmp
bne 1b
/* zero 8 bytes at a time */
.Lzeromem_8bytes_aligned:
/* Calculate the last 8 bytes aligned address. */
bic tmp, stop_address, #(8-1)
cmp cursor, tmp
bhs 2f
mov zeroreg2, #0
1:
stmia cursor!, {zeroreg1, zeroreg2}
cmp cursor, tmp
blo 1b
2:
/* zero byte per byte */
.Lzeromem_1byte_aligned:
cmp cursor, stop_address
beq 2f
1:
strb zeroreg1, [cursor], #1
cmp cursor, stop_address
bne 1b
2:
bx lr
.unreq cursor
/*
* length is already unreq'ed to reuse the register for another
* variable.
*/
.unreq stop_address
.unreq zeroreg1
.unreq zeroreg2
.unreq tmp
endfunc zeromem
/*
* AArch32 does not have special ways of zeroing normal memory as AArch64 does
* using the DC ZVA instruction, so we just alias zero_normalmem to zeromem.
*/
.equ zero_normalmem, zeromem
/* --------------------------------------------------------------------------
* void memcpy4(void *dest, const void *src, unsigned int length)
*
* Copy length bytes from memory area src to memory area dest.
* The memory areas should not overlap.
* Destination and source addresses must be 4-byte aligned.
* --------------------------------------------------------------------------
*/
func memcpy4
#if ENABLE_ASSERTIONS
orr r3, r0, r1
tst r3, #0x3
ASM_ASSERT(eq)
#endif
/* copy 4 bytes at a time */
m_loop4:
cmp r2, #4
blo m_loop1
ldr r3, [r1], #4
str r3, [r0], #4
subs r2, r2, #4
bne m_loop4
bx lr
/* copy byte per byte */
m_loop1:
ldrb r3, [r1], #1
strb r3, [r0], #1
subs r2, r2, #1
bne m_loop1
bx lr
endfunc memcpy4
/* ---------------------------------------------------------------------------
* Disable the MMU in Secure State
* ---------------------------------------------------------------------------
*/
func disable_mmu_secure
mov r1, #(SCTLR_M_BIT | SCTLR_C_BIT)
do_disable_mmu:
#if ERRATA_A9_794073
stcopr r0, BPIALL
dsb
#endif
ldcopr r0, SCTLR
bic r0, r0, r1
stcopr r0, SCTLR
isb // ensure MMU is off
dsb sy
bx lr
endfunc disable_mmu_secure
func disable_mmu_icache_secure
ldr r1, =(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
b do_disable_mmu
endfunc disable_mmu_icache_secure
/* ---------------------------------------------------------------------------
* Helper to fixup Global Descriptor table (GDT) and dynamic relocations
* (.rel.dyn) at runtime.
*
* This function is meant to be used when the firmware is compiled with -fpie
* and linked with -pie options. We rely on the linker script exporting
* appropriate markers for start and end of the section. For GOT, we
* expect __GOT_START__ and __GOT_END__. Similarly for .rela.dyn, we expect
* __RELA_START__ and __RELA_END__.
*
* The function takes the limits of the memory to apply fixups to as
* arguments (which is usually the limits of the relocable BL image).
* r0 - the start of the fixup region
* r1 - the limit of the fixup region
* These addresses have to be 4KB page aligned.
* ---------------------------------------------------------------------------
*/
/* Relocation codes */
#define R_ARM_RELATIVE 23
func fixup_gdt_reloc
mov r6, r0
mov r7, r1
#if ENABLE_ASSERTIONS
/* Test if the limits are 4K aligned */
orr r0, r0, r1
mov r1, #(PAGE_SIZE_MASK)
tst r0, r1
ASM_ASSERT(eq)
#endif
/*
* Calculate the offset based on return address in lr.
* Assume that this function is called within a page at the start of
* fixup region.
*/
ldr r1, =PAGE_START_MASK
and r2, lr, r1
subs r0, r2, r6 /* Diff(S) = Current Address - Compiled Address */
beq 3f /* Diff(S) = 0. No relocation needed */
ldr r1, =__GOT_START__
add r1, r1, r0
ldr r2, =__GOT_END__
add r2, r2, r0
/*
* GOT is an array of 32_bit addresses which must be fixed up as
* new_addr = old_addr + Diff(S).
* The new_addr is the address currently the binary is executing from
* and old_addr is the address at compile time.
*/
1: ldr r3, [r1]
/* Skip adding offset if address is < lower limit */
cmp r3, r6
blo 2f
/* Skip adding offset if address is > upper limit */
cmp r3, r7
bhi 2f
add r3, r3, r0
str r3, [r1]
2: add r1, r1, #4
cmp r1, r2
blo 1b
/* Starting dynamic relocations. Use ldr to get RELA_START and END */
3: ldr r1, =__RELA_START__
add r1, r1, r0
ldr r2, =__RELA_END__
add r2, r2, r0
/*
* According to ELF-32 specification, the RELA data structure is as
* follows:
* typedef struct {
* Elf32_Addr r_offset;
* Elf32_Xword r_info;
* } Elf32_Rela;
*
* r_offset is address of reference
* r_info is symbol index and type of relocation (in this case
* code 23 which corresponds to R_ARM_RELATIVE).
*
* Size of Elf32_Rela structure is 8 bytes.
*/
/* Skip R_ARM_NONE entry with code 0 */
1: ldr r3, [r1, #4]
ands r3, r3, #0xff
beq 2f
#if ENABLE_ASSERTIONS
/* Assert that the relocation type is R_ARM_RELATIVE */
cmp r3, #R_ARM_RELATIVE
ASM_ASSERT(eq)
#endif
ldr r3, [r1] /* r_offset */
add r3, r0, r3 /* Diff(S) + r_offset */
ldr r4, [r3]
/* Skip adding offset if address is < lower limit */
cmp r4, r6
blo 2f
/* Skip adding offset if address is > upper limit */
cmp r4, r7
bhi 2f
add r4, r0, r4
str r4, [r3]
2: add r1, r1, #8
cmp r1, r2
blo 1b
bx lr
endfunc fixup_gdt_reloc