You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

318 lines
12 KiB

/*
* Copyright (c) 2013-2020, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stddef.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <context.h>
#include <lib/cpus/errata.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <plat/common/platform.h>
#include "psci_private.h"
/*
* Check that PLATFORM_CORE_COUNT fits into the number of cores
* that can be represented by PSCI_MAX_CPUS_INDEX.
*/
CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow);
/*******************************************************************************
* Per cpu non-secure contexts used to program the architectural state prior
* return to the normal world.
* TODO: Use the memory allocator to set aside memory for the contexts instead
* of relying on platform defined constants.
******************************************************************************/
static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
/******************************************************************************
* Define the psci capability variable.
*****************************************************************************/
unsigned int psci_caps;
/*******************************************************************************
* Function which initializes the 'psci_non_cpu_pd_nodes' or the
* 'psci_cpu_pd_nodes' corresponding to the power level.
******************************************************************************/
static void __init psci_init_pwr_domain_node(uint16_t node_idx,
unsigned int parent_idx,
unsigned char level)
{
if (level > PSCI_CPU_PWR_LVL) {
assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS);
psci_non_cpu_pd_nodes[node_idx].level = level;
psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
psci_non_cpu_pd_nodes[node_idx].local_state =
PLAT_MAX_OFF_STATE;
} else {
psci_cpu_data_t *svc_cpu_data;
assert(node_idx < PLATFORM_CORE_COUNT);
psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
/* Initialize with an invalid mpidr */
psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
svc_cpu_data =
&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
/* Set the Affinity Info for the cores as OFF */
svc_cpu_data->aff_info_state = AFF_STATE_OFF;
/* Invalidate the suspend level for the cpu */
svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL;
/* Set the power state to OFF state */
svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
psci_flush_dcache_range((uintptr_t)svc_cpu_data,
sizeof(*svc_cpu_data));
cm_set_context_by_index(node_idx,
(void *) &psci_ns_context[node_idx],
NON_SECURE);
}
}
/*******************************************************************************
* This functions updates cpu_start_idx and ncpus field for each of the node in
* psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
* the CPUs and check whether they match with the parent of the previous
* CPU. The basic assumption for this work is that children of the same parent
* are allocated adjacent indices. The platform should ensure this though proper
* mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
* plat_my_core_pos() APIs.
*******************************************************************************/
static void __init psci_update_pwrlvl_limits(void)
{
unsigned int cpu_idx;
int j;
unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
unsigned int temp_index[PLAT_MAX_PWR_LVL];
for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
psci_get_parent_pwr_domain_nodes(cpu_idx,
PLAT_MAX_PWR_LVL,
temp_index);
for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
if (temp_index[j] != nodes_idx[j]) {
nodes_idx[j] = temp_index[j];
psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
= cpu_idx;
}
psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
}
}
}
/*******************************************************************************
* Core routine to populate the power domain tree. The tree descriptor passed by
* the platform is populated breadth-first and the first entry in the map
* informs the number of root power domains. The parent nodes of the root nodes
* will point to an invalid entry(-1).
******************************************************************************/
static unsigned int __init populate_power_domain_tree(const unsigned char
*topology)
{
unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
unsigned int node_index = 0U, num_children;
unsigned int parent_node_index = 0U;
int level = (int)PLAT_MAX_PWR_LVL;
/*
* For each level the inputs are:
* - number of nodes at this level in plat_array i.e. num_nodes_at_level
* This is the sum of values of nodes at the parent level.
* - Index of first entry at this level in the plat_array i.e.
* parent_node_index.
* - Index of first free entry in psci_non_cpu_pd_nodes[] or
* psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
*/
while (level >= (int) PSCI_CPU_PWR_LVL) {
num_nodes_at_next_lvl = 0U;
/*
* For each entry (parent node) at this level in the plat_array:
* - Find the number of children
* - Allocate a node in a power domain array for each child
* - Set the parent of the child to the parent_node_index - 1
* - Increment parent_node_index to point to the next parent
* - Accumulate the number of children at next level.
*/
for (i = 0U; i < num_nodes_at_lvl; i++) {
assert(parent_node_index <=
PSCI_NUM_NON_CPU_PWR_DOMAINS);
num_children = topology[parent_node_index];
for (j = node_index;
j < (node_index + num_children); j++)
psci_init_pwr_domain_node((uint16_t)j,
parent_node_index - 1U,
(unsigned char)level);
node_index = j;
num_nodes_at_next_lvl += num_children;
parent_node_index++;
}
num_nodes_at_lvl = num_nodes_at_next_lvl;
level--;
/* Reset the index for the cpu power domain array */
if (level == (int) PSCI_CPU_PWR_LVL)
node_index = 0;
}
/* Validate the sanity of array exported by the platform */
assert(j <= PLATFORM_CORE_COUNT);
return j;
}
/*******************************************************************************
* This function does the architectural setup and takes the warm boot
* entry-point `mailbox_ep` as an argument. The function also initializes the
* power domain topology tree by querying the platform. The power domain nodes
* higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
* the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
* exports its static topology map through the
* populate_power_domain_topology_tree() API. The algorithm populates the
* psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
* topology map. On a platform that implements two clusters of 2 cpus each,
* and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
* look like this:
*
* ---------------------------------------------------
* | system node | cluster 0 node | cluster 1 node |
* ---------------------------------------------------
*
* And populated psci_cpu_pd_nodes would look like this :
* <- cpus cluster0 -><- cpus cluster1 ->
* ------------------------------------------------
* | CPU 0 | CPU 1 | CPU 2 | CPU 3 |
* ------------------------------------------------
******************************************************************************/
int __init psci_setup(const psci_lib_args_t *lib_args)
{
const unsigned char *topology_tree;
assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
/* Do the Architectural initialization */
psci_arch_setup();
/* Query the topology map from the platform */
topology_tree = plat_get_power_domain_tree_desc();
/* Populate the power domain arrays using the platform topology map */
psci_plat_core_count = populate_power_domain_tree(topology_tree);
/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
psci_update_pwrlvl_limits();
/* Populate the mpidr field of cpu node for this CPU */
psci_cpu_pd_nodes[plat_my_core_pos()].mpidr =
read_mpidr() & MPIDR_AFFINITY_MASK;
psci_init_req_local_pwr_states();
/*
* Set the requested and target state of this CPU and all the higher
* power domain levels for this CPU to run.
*/
psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
&psci_plat_pm_ops);
assert(psci_plat_pm_ops != NULL);
/*
* Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
* during warm boot, possibly before data cache is enabled.
*/
psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
sizeof(psci_plat_pm_ops));
/* Initialize the psci capability */
psci_caps = PSCI_GENERIC_CAP;
if (psci_plat_pm_ops->pwr_domain_off != NULL)
psci_caps |= define_psci_cap(PSCI_CPU_OFF);
if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
(psci_plat_pm_ops->pwr_domain_on_finish != NULL))
psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64);
if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
(psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
if (psci_plat_pm_ops->validate_power_state != NULL)
psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
#if PSCI_OS_INIT_MODE
psci_caps |= define_psci_cap(PSCI_SET_SUSPEND_MODE);
#endif
}
if (psci_plat_pm_ops->system_off != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF);
if (psci_plat_pm_ops->system_reset != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET);
if (psci_plat_pm_ops->get_node_hw_state != NULL)
psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
(psci_plat_pm_ops->write_mem_protect != NULL))
psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
if (psci_plat_pm_ops->mem_protect_chk != NULL)
psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
if (psci_plat_pm_ops->system_reset2 != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
#if ENABLE_PSCI_STAT
psci_caps |= define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
psci_caps |= define_psci_cap(PSCI_STAT_COUNT_AARCH64);
#endif
return 0;
}
/*******************************************************************************
* This duplicates what the primary cpu did after a cold boot in BL1. The same
* needs to be done when a cpu is hotplugged in. This function could also over-
* ride any EL3 setup done by BL1 as this code resides in rw memory.
******************************************************************************/
void psci_arch_setup(void)
{
#if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
/* Program the counter frequency */
write_cntfrq_el0(plat_get_syscnt_freq2());
#endif
/* Initialize the cpu_ops pointer. */
init_cpu_ops();
/* Having initialized cpu_ops, we can now print errata status */
print_errata_status();
#if ENABLE_PAUTH
/* Store APIAKey_EL1 key */
set_cpu_data(apiakey[0], read_apiakeylo_el1());
set_cpu_data(apiakey[1], read_apiakeyhi_el1());
#endif /* ENABLE_PAUTH */
}
/******************************************************************************
* PSCI Library interface to initialize the cpu context for the next non
* secure image during cold boot. The relevant registers in the cpu context
* need to be retrieved and programmed on return from this interface.
*****************************************************************************/
void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
{
assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
cm_init_my_context(next_image_info);
cm_prepare_el3_exit(NON_SECURE);
}