You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

526 lines
15 KiB

/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Exception handlers at EL3, their priority levels, and management.
*/
#include <assert.h>
#include <stdbool.h>
#include <bl31/ehf.h>
#include <bl31/interrupt_mgmt.h>
#include <context.h>
#include <common/debug.h>
#include <drivers/arm/gic_common.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/cpu_data.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <plat/common/platform.h>
/* Output EHF logs as verbose */
#define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__)
#define EHF_INVALID_IDX (-1)
/* For a valid handler, return the actual function pointer; otherwise, 0. */
#define RAW_HANDLER(h) \
((ehf_handler_t) ((((h) & EHF_PRI_VALID_) != 0U) ? \
((h) & ~EHF_PRI_VALID_) : 0U))
#define PRI_BIT(idx) (((ehf_pri_bits_t) 1u) << (idx))
/*
* Convert index into secure priority using the platform-defined priority bits
* field.
*/
#define IDX_TO_PRI(idx) \
((((unsigned) idx) << (7u - exception_data.pri_bits)) & 0x7fU)
/* Check whether a given index is valid */
#define IS_IDX_VALID(idx) \
((exception_data.ehf_priorities[idx].ehf_handler & EHF_PRI_VALID_) != 0U)
/* Returns whether given priority is in secure priority range */
#define IS_PRI_SECURE(pri) (((pri) & 0x80U) == 0U)
/* To be defined by the platform */
extern const ehf_priorities_t exception_data;
/* Translate priority to the index in the priority array */
static unsigned int pri_to_idx(unsigned int priority)
{
unsigned int idx;
idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits);
assert(idx < exception_data.num_priorities);
assert(IS_IDX_VALID(idx));
return idx;
}
/* Return whether there are outstanding priority activation */
static bool has_valid_pri_activations(pe_exc_data_t *pe_data)
{
return pe_data->active_pri_bits != 0U;
}
static pe_exc_data_t *this_cpu_data(void)
{
return &get_cpu_data(ehf_data);
}
/*
* Return the current priority index of this CPU. If no priority is active,
* return EHF_INVALID_IDX.
*/
static int get_pe_highest_active_idx(pe_exc_data_t *pe_data)
{
if (!has_valid_pri_activations(pe_data))
return EHF_INVALID_IDX;
/* Current priority is the right-most bit */
return (int) __builtin_ctz(pe_data->active_pri_bits);
}
/*
* Mark priority active by setting the corresponding bit in active_pri_bits and
* programming the priority mask.
*
* This API is to be used as part of delegating to lower ELs other than for
* interrupts; e.g. while handling synchronous exceptions.
*
* This API is expected to be invoked before restoring context (Secure or
* Non-secure) in preparation for the respective dispatch.
*/
void ehf_activate_priority(unsigned int priority)
{
int cur_pri_idx;
unsigned int old_mask, run_pri, idx;
pe_exc_data_t *pe_data = this_cpu_data();
/*
* Query interrupt controller for the running priority, or idle priority
* if no interrupts are being handled. The requested priority must be
* less (higher priority) than the active running priority.
*/
run_pri = plat_ic_get_running_priority();
if (priority >= run_pri) {
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
run_pri, priority);
panic();
}
/*
* If there were priority activations already, the requested priority
* must be less (higher priority) than the current highest priority
* activation so far.
*/
cur_pri_idx = get_pe_highest_active_idx(pe_data);
idx = pri_to_idx(priority);
if ((cur_pri_idx != EHF_INVALID_IDX) &&
(idx >= ((unsigned int) cur_pri_idx))) {
ERROR("Activation priority mismatch: req=0x%x current=0x%x\n",
priority, IDX_TO_PRI(cur_pri_idx));
panic();
}
/* Set the bit corresponding to the requested priority */
pe_data->active_pri_bits |= PRI_BIT(idx);
/*
* Program priority mask for the activated level. Check that the new
* priority mask is setting a higher priority level than the existing
* mask.
*/
old_mask = plat_ic_set_priority_mask(priority);
if (priority >= old_mask) {
ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n",
priority, old_mask);
panic();
}
/*
* If this is the first activation, save the priority mask. This will be
* restored after the last deactivation.
*/
if (cur_pri_idx == EHF_INVALID_IDX)
pe_data->init_pri_mask = (uint8_t) old_mask;
EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data));
}
/*
* Mark priority inactive by clearing the corresponding bit in active_pri_bits,
* and programming the priority mask.
*
* This API is expected to be used as part of delegating to to lower ELs other
* than for interrupts; e.g. while handling synchronous exceptions.
*
* This API is expected to be invoked after saving context (Secure or
* Non-secure), having concluded the respective dispatch.
*/
void ehf_deactivate_priority(unsigned int priority)
{
int cur_pri_idx;
pe_exc_data_t *pe_data = this_cpu_data();
unsigned int old_mask, run_pri, idx;
/*
* Query interrupt controller for the running priority, or idle priority
* if no interrupts are being handled. The requested priority must be
* less (higher priority) than the active running priority.
*/
run_pri = plat_ic_get_running_priority();
if (priority >= run_pri) {
ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
run_pri, priority);
panic();
}
/*
* Deactivation is allowed only when there are priority activations, and
* the deactivation priority level must match the current activated
* priority.
*/
cur_pri_idx = get_pe_highest_active_idx(pe_data);
idx = pri_to_idx(priority);
if ((cur_pri_idx == EHF_INVALID_IDX) ||
(idx != ((unsigned int) cur_pri_idx))) {
ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n",
priority, IDX_TO_PRI(cur_pri_idx));
panic();
}
/* Clear bit corresponding to highest priority */
pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1u);
/*
* Restore priority mask corresponding to the next priority, or the
* one stashed earlier if there are no more to deactivate.
*/
cur_pri_idx = get_pe_highest_active_idx(pe_data);
if (cur_pri_idx == EHF_INVALID_IDX)
old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask);
else
old_mask = plat_ic_set_priority_mask(priority);
if (old_mask > priority) {
ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n",
priority, old_mask);
panic();
}
EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data));
}
/*
* After leaving Non-secure world, stash current Non-secure Priority Mask, and
* set Priority Mask to the highest Non-secure priority so that Non-secure
* interrupts cannot preempt Secure execution.
*
* If the current running priority is in the secure range, or if there are
* outstanding priority activations, this function does nothing.
*
* This function subscribes to the 'cm_exited_normal_world' event published by
* the Context Management Library.
*/
static void *ehf_exited_normal_world(const void *arg)
{
unsigned int run_pri;
pe_exc_data_t *pe_data = this_cpu_data();
/* If the running priority is in the secure range, do nothing */
run_pri = plat_ic_get_running_priority();
if (IS_PRI_SECURE(run_pri))
return NULL;
/* Do nothing if there are explicit activations */
if (has_valid_pri_activations(pe_data))
return NULL;
assert(pe_data->ns_pri_mask == 0u);
pe_data->ns_pri_mask =
(uint8_t) plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY);
/* The previous Priority Mask is not expected to be in secure range */
if (IS_PRI_SECURE(pe_data->ns_pri_mask)) {
ERROR("Priority Mask (0x%x) already in secure range\n",
pe_data->ns_pri_mask);
panic();
}
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask,
GIC_HIGHEST_NS_PRIORITY);
return NULL;
}
/*
* Conclude Secure execution and prepare for return to Non-secure world. Restore
* the Non-secure Priority Mask previously stashed upon leaving Non-secure
* world.
*
* If there the current running priority is in the secure range, or if there are
* outstanding priority activations, this function does nothing.
*
* This function subscribes to the 'cm_entering_normal_world' event published by
* the Context Management Library.
*/
static void *ehf_entering_normal_world(const void *arg)
{
unsigned int old_pmr, run_pri;
pe_exc_data_t *pe_data = this_cpu_data();
/* If the running priority is in the secure range, do nothing */
run_pri = plat_ic_get_running_priority();
if (IS_PRI_SECURE(run_pri))
return NULL;
/*
* If there are explicit activations, do nothing. The Priority Mask will
* be restored upon the last deactivation.
*/
if (has_valid_pri_activations(pe_data))
return NULL;
/* Do nothing if we don't have a valid Priority Mask to restore */
if (pe_data->ns_pri_mask == 0U)
return NULL;
old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);
/*
* When exiting secure world, the current Priority Mask must be
* GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure
* priority mask set upon calling ehf_allow_ns_preemption()
*/
if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) &&
(old_pmr != pe_data->ns_pri_mask)) {
ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr);
panic();
}
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);
pe_data->ns_pri_mask = 0;
return NULL;
}
/*
* Program Priority Mask to the original Non-secure priority such that
* Non-secure interrupts may preempt Secure execution (for example, during
* Yielding SMC calls). The 'preempt_ret_code' parameter indicates the Yielding
* SMC's return value in case the call was preempted.
*
* This API is expected to be invoked before delegating a yielding SMC to Secure
* EL1. I.e. within the window of secure execution after Non-secure context is
* saved (after entry into EL3) and Secure context is restored (before entering
* Secure EL1).
*/
void ehf_allow_ns_preemption(uint64_t preempt_ret_code)
{
cpu_context_t *ns_ctx;
unsigned int old_pmr __unused;
pe_exc_data_t *pe_data = this_cpu_data();
/*
* We should have been notified earlier of entering secure world, and
* therefore have stashed the Non-secure priority mask.
*/
assert(pe_data->ns_pri_mask != 0U);
/* Make sure no priority levels are active when requesting this */
if (has_valid_pri_activations(pe_data)) {
ERROR("PE %lx has priority activations: 0x%x\n",
read_mpidr_el1(), pe_data->active_pri_bits);
panic();
}
/*
* Program preempted return code to x0 right away so that, if the
* Yielding SMC was indeed preempted before a dispatcher gets a chance
* to populate it, the caller would find the correct return value.
*/
ns_ctx = cm_get_context(NON_SECURE);
assert(ns_ctx != NULL);
write_ctx_reg(get_gpregs_ctx(ns_ctx), CTX_GPREG_X0, preempt_ret_code);
old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);
EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);
pe_data->ns_pri_mask = 0;
}
/*
* Return whether Secure execution has explicitly allowed Non-secure interrupts
* to preempt itself (for example, during Yielding SMC calls).
*/
unsigned int ehf_is_ns_preemption_allowed(void)
{
unsigned int run_pri;
pe_exc_data_t *pe_data = this_cpu_data();
/* If running priority is in secure range, return false */
run_pri = plat_ic_get_running_priority();
if (IS_PRI_SECURE(run_pri))
return 0;
/*
* If Non-secure preemption was permitted by calling
* ehf_allow_ns_preemption() earlier:
*
* - There wouldn't have been priority activations;
* - We would have cleared the stashed the Non-secure Priority Mask.
*/
if (has_valid_pri_activations(pe_data))
return 0;
if (pe_data->ns_pri_mask != 0U)
return 0;
return 1;
}
/*
* Top-level EL3 interrupt handler.
*/
static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
int ret = 0;
uint32_t intr_raw;
unsigned int intr, pri, idx;
ehf_handler_t handler;
/*
* Top-level interrupt type handler from Interrupt Management Framework
* doesn't acknowledge the interrupt; so the interrupt ID must be
* invalid.
*/
assert(id == INTR_ID_UNAVAILABLE);
/*
* Acknowledge interrupt. Proceed with handling only for valid interrupt
* IDs. This situation may arise because of Interrupt Management
* Framework identifying an EL3 interrupt, but before it's been
* acknowledged here, the interrupt was either deasserted, or there was
* a higher-priority interrupt of another type.
*/
intr_raw = plat_ic_acknowledge_interrupt();
intr = plat_ic_get_interrupt_id(intr_raw);
if (intr == INTR_ID_UNAVAILABLE)
return 0;
/* Having acknowledged the interrupt, get the running priority */
pri = plat_ic_get_running_priority();
/* Check EL3 interrupt priority is in secure range */
assert(IS_PRI_SECURE(pri));
/*
* Translate the priority to a descriptor index. We do this by masking
* and shifting the running priority value (platform-supplied).
*/
idx = pri_to_idx(pri);
/* Validate priority */
assert(pri == IDX_TO_PRI(idx));
handler = (ehf_handler_t) RAW_HANDLER(
exception_data.ehf_priorities[idx].ehf_handler);
if (handler == NULL) {
ERROR("No EL3 exception handler for priority 0x%x\n",
IDX_TO_PRI(idx));
panic();
}
/*
* Call registered handler. Pass the raw interrupt value to registered
* handlers.
*/
ret = handler(intr_raw, flags, handle, cookie);
return (uint64_t) ret;
}
/*
* Initialize the EL3 exception handling.
*/
void __init ehf_init(void)
{
unsigned int flags = 0;
int ret __unused;
/* Ensure EL3 interrupts are supported */
assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3) != 0);
/*
* Make sure that priority water mark has enough bits to represent the
* whole priority array.
*/
assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8U));
assert(exception_data.ehf_priorities != NULL);
/*
* Bit 7 of GIC priority must be 0 for secure interrupts. This means
* platforms must use at least 1 of the remaining 7 bits.
*/
assert((exception_data.pri_bits >= 1U) ||
(exception_data.pri_bits < 8U));
/* Route EL3 interrupts when in Secure and Non-secure. */
set_interrupt_rm_flag(flags, NON_SECURE);
set_interrupt_rm_flag(flags, SECURE);
/* Register handler for EL3 interrupts */
ret = register_interrupt_type_handler(INTR_TYPE_EL3,
ehf_el3_interrupt_handler, flags);
assert(ret == 0);
}
/*
* Register a handler at the supplied priority. Registration is allowed only if
* a handler hasn't been registered before, or one wasn't provided at build
* time. The priority for which the handler is being registered must also accord
* with the platform-supplied data.
*/
void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler)
{
unsigned int idx;
/* Sanity check for handler */
assert(handler != NULL);
/* Handler ought to be 4-byte aligned */
assert((((uintptr_t) handler) & 3U) == 0U);
/* Ensure we register for valid priority */
idx = pri_to_idx(pri);
assert(idx < exception_data.num_priorities);
assert(IDX_TO_PRI(idx) == pri);
/* Return failure if a handler was already registered */
if (exception_data.ehf_priorities[idx].ehf_handler != EHF_NO_HANDLER_) {
ERROR("Handler already registered for priority 0x%x\n", pri);
panic();
}
/*
* Install handler, and retain the valid bit. We assume that the handler
* is 4-byte aligned, which is usually the case.
*/
exception_data.ehf_priorities[idx].ehf_handler =
(((uintptr_t) handler) | EHF_PRI_VALID_);
EHF_LOG("register pri=0x%x handler=%p\n", pri, handler);
}
SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world);
SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world);