You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
10 KiB
321 lines
10 KiB
/*
|
|
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <debug.h>
|
|
#include <interrupt_mgmt.h>
|
|
#include <platform.h>
|
|
#include <stdint.h>
|
|
#include <tegra_def.h>
|
|
#include <tegra_private.h>
|
|
|
|
/* Value used to initialize Non-Secure IRQ priorities four at a time */
|
|
#define GICD_IPRIORITYR_DEF_VAL \
|
|
(GIC_HIGHEST_NS_PRIORITY | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 8) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 16) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 24))
|
|
|
|
static const irq_sec_cfg_t *g_irq_sec_ptr;
|
|
static uint32_t g_num_irqs;
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void tegra_gic_cpuif_deactivate(void)
|
|
{
|
|
uint32_t val;
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
val = gicc_read_ctlr(TEGRA_GICC_BASE);
|
|
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(TEGRA_GICC_BASE, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and set the priority mask register to allow all
|
|
* interrupts to trickle in.
|
|
******************************************************************************/
|
|
static void tegra_gic_cpuif_setup(uint32_t gicc_base)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
gicc_write_ctlr(gicc_base, val);
|
|
gicc_write_pmr(gicc_base, GIC_PRI_MASK);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure interrupts & enables them.
|
|
******************************************************************************/
|
|
static void tegra_gic_pcpu_distif_setup(uint32_t gicd_base)
|
|
{
|
|
uint32_t index, sec_ppi_sgi_mask = 0;
|
|
|
|
assert(gicd_base != 0U);
|
|
|
|
/* Setup PPI priorities doing four at a time */
|
|
for (index = 0U; index < 32U; index += 4U) {
|
|
gicd_write_ipriorityr(gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
/*
|
|
* Invert the bitmask to create a mask for non-secure PPIs and
|
|
* SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
|
|
* update the GICR_IGROUPR0 as well in case we are running on a GICv3
|
|
* system. This is critical if GICD_CTLR.ARE_NS=1.
|
|
*/
|
|
gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor setup which will be done by the primary cpu after a
|
|
* cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them.
|
|
* It then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
static void tegra_gic_distif_setup(uint32_t gicd_base)
|
|
{
|
|
uint32_t index, num_ints, irq_num;
|
|
uint8_t target_cpus;
|
|
uint32_t val;
|
|
|
|
/*
|
|
* Mark out non-secure interrupts. Calculate number of
|
|
* IGROUPR registers to consider. Will be equal to the
|
|
* number of IT_LINES
|
|
*/
|
|
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1U) << 5;
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 32U) {
|
|
gicd_write_igroupr(gicd_base, index, 0xFFFFFFFFU);
|
|
}
|
|
|
|
/* Setup SPI priorities doing four at a time */
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 4U) {
|
|
gicd_write_ipriorityr(gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
/* Configure SPI secure interrupts now */
|
|
if (g_irq_sec_ptr != NULL) {
|
|
|
|
for (index = 0U; index < g_num_irqs; index++) {
|
|
irq_num = g_irq_sec_ptr[index].irq;
|
|
target_cpus = (uint8_t)g_irq_sec_ptr[index].target_cpus;
|
|
|
|
if (irq_num >= MIN_SPI_ID) {
|
|
|
|
/* Configure as a secure interrupt */
|
|
gicd_clr_igroupr(gicd_base, irq_num);
|
|
|
|
/* Configure SPI priority */
|
|
mmio_write_8((uint64_t)gicd_base +
|
|
(uint64_t)GICD_IPRIORITYR +
|
|
(uint64_t)irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY &
|
|
GIC_PRI_MASK);
|
|
|
|
/* Configure as level triggered */
|
|
val = gicd_read_icfgr(gicd_base, irq_num);
|
|
val |= (3U << ((irq_num & 0xFU) << 1U));
|
|
gicd_write_icfgr(gicd_base, irq_num, val);
|
|
|
|
/* Route SPI to the target CPUs */
|
|
gicd_set_itargetsr(gicd_base, irq_num,
|
|
target_cpus);
|
|
|
|
/* Enable this interrupt */
|
|
gicd_set_isenabler(gicd_base, irq_num);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the SGI and PPI. This is done in a separated function
|
|
* because each CPU is responsible for initializing its own private
|
|
* interrupts.
|
|
*/
|
|
tegra_gic_pcpu_distif_setup(gicd_base);
|
|
|
|
/* enable distributor */
|
|
gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1);
|
|
}
|
|
|
|
void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, uint32_t num_irqs)
|
|
{
|
|
g_irq_sec_ptr = irq_sec_ptr;
|
|
g_num_irqs = num_irqs;
|
|
|
|
tegra_gic_cpuif_setup(TEGRA_GICC_BASE);
|
|
tegra_gic_distif_setup(TEGRA_GICD_BASE);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
|
|
* The interrupt controller knows which pin/line it uses to signal a type of
|
|
* interrupt. This function provides a common implementation of
|
|
* plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
|
|
* across platforms. It lets the interrupt management framework determine
|
|
* for a type of interrupt and security state, which line should be used in the
|
|
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
|
|
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
|
|
******************************************************************************/
|
|
static uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
|
|
uint32_t security_state)
|
|
{
|
|
assert((type == INTR_TYPE_S_EL1) ||
|
|
(type == INTR_TYPE_EL3) ||
|
|
(type == INTR_TYPE_NS));
|
|
|
|
assert(sec_state_is_valid(security_state));
|
|
|
|
/*
|
|
* We ignore the security state parameter under the assumption that
|
|
* both normal and secure worlds are using ARM GICv2. This parameter
|
|
* will be used when the secure world starts using GICv3.
|
|
*/
|
|
return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
static uint32_t tegra_gic_get_pending_interrupt_type(void)
|
|
{
|
|
uint32_t id;
|
|
uint32_t index;
|
|
uint32_t ret = INTR_TYPE_NS;
|
|
|
|
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
|
|
|
|
/* get the interrupt type */
|
|
if (id < 1022U) {
|
|
for (index = 0U; index < g_num_irqs; index++) {
|
|
if (id == g_irq_sec_ptr[index].irq) {
|
|
ret = g_irq_sec_ptr[index].type;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
if (id == GIC_SPURIOUS_INTERRUPT) {
|
|
ret = INTR_TYPE_INVAL;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
static uint32_t tegra_gic_get_pending_interrupt_id(void)
|
|
{
|
|
uint32_t id, ret;
|
|
|
|
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
|
|
|
|
if (id < 1022U) {
|
|
ret = id;
|
|
} else if (id == 1023U) {
|
|
ret = 0xFFFFFFFFU; /* INTR_ID_UNAVAILABLE */
|
|
} else {
|
|
/*
|
|
* Find out which non-secure interrupt it is under the assumption that
|
|
* the GICC_CTLR.AckCtl bit is 0.
|
|
*/
|
|
ret = gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions reads the GIC cpu interface Interrupt Acknowledge register
|
|
* to start handling the pending interrupt. It returns the contents of the IAR.
|
|
******************************************************************************/
|
|
static uint32_t tegra_gic_acknowledge_interrupt(void)
|
|
{
|
|
return gicc_read_IAR(TEGRA_GICC_BASE);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions writes the GIC cpu interface End Of Interrupt register with
|
|
* the passed value to finish handling the active interrupt
|
|
******************************************************************************/
|
|
static void tegra_gic_end_of_interrupt(uint32_t id)
|
|
{
|
|
gicc_write_EOIR(TEGRA_GICC_BASE, id);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1.
|
|
******************************************************************************/
|
|
static uint32_t tegra_gic_get_interrupt_type(uint32_t id)
|
|
{
|
|
uint32_t group;
|
|
uint32_t index;
|
|
uint32_t ret = INTR_TYPE_NS;
|
|
|
|
group = gicd_get_igroupr(TEGRA_GICD_BASE, id);
|
|
|
|
/* get the interrupt type */
|
|
if (group == GRP0) {
|
|
for (index = 0U; index < g_num_irqs; index++) {
|
|
if (id == g_irq_sec_ptr[index].irq) {
|
|
ret = g_irq_sec_ptr[index].type;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t plat_ic_get_pending_interrupt_id(void)
|
|
{
|
|
return tegra_gic_get_pending_interrupt_id();
|
|
}
|
|
|
|
uint32_t plat_ic_get_pending_interrupt_type(void)
|
|
{
|
|
return tegra_gic_get_pending_interrupt_type();
|
|
}
|
|
|
|
uint32_t plat_ic_acknowledge_interrupt(void)
|
|
{
|
|
return tegra_gic_acknowledge_interrupt();
|
|
}
|
|
|
|
uint32_t plat_ic_get_interrupt_type(uint32_t id)
|
|
{
|
|
return tegra_gic_get_interrupt_type(id);
|
|
}
|
|
|
|
void plat_ic_end_of_interrupt(uint32_t id)
|
|
{
|
|
tegra_gic_end_of_interrupt(id);
|
|
}
|
|
|
|
uint32_t plat_interrupt_type_to_line(uint32_t type,
|
|
uint32_t security_state)
|
|
{
|
|
return tegra_gic_interrupt_type_to_line(type, security_state);
|
|
}
|
|
|