You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1662 lines
43 KiB
1662 lines
43 KiB
/*
|
|
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <common_def.h>
|
|
#include <debug.h>
|
|
#include <errno.h>
|
|
#include <platform_def.h>
|
|
#include <string.h>
|
|
#include <types.h>
|
|
#include <utils.h>
|
|
#include <xlat_tables_arch_private.h>
|
|
#include <xlat_tables_defs.h>
|
|
#include <xlat_tables_v2.h>
|
|
|
|
#include "xlat_tables_private.h"
|
|
|
|
/*
|
|
* Each platform can define the size of its physical and virtual address spaces.
|
|
* If the platform hasn't defined one or both of them, default to
|
|
* ADDR_SPACE_SIZE. The latter is deprecated, though.
|
|
*/
|
|
#if ERROR_DEPRECATED
|
|
# ifdef ADDR_SPACE_SIZE
|
|
# error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead."
|
|
# endif
|
|
#elif defined(ADDR_SPACE_SIZE)
|
|
# ifndef PLAT_PHY_ADDR_SPACE_SIZE
|
|
# define PLAT_PHY_ADDR_SPACE_SIZE ADDR_SPACE_SIZE
|
|
# endif
|
|
# ifndef PLAT_VIRT_ADDR_SPACE_SIZE
|
|
# define PLAT_VIRT_ADDR_SPACE_SIZE ADDR_SPACE_SIZE
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* Allocate and initialise the default translation context for the BL image
|
|
* currently executing.
|
|
*/
|
|
REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
|
|
PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
|
|
/*
|
|
* The following functions assume that they will be called using subtables only.
|
|
* The base table can't be unmapped, so it is not needed to do any special
|
|
* handling for it.
|
|
*/
|
|
|
|
/*
|
|
* Returns the index of the array corresponding to the specified translation
|
|
* table.
|
|
*/
|
|
static int xlat_table_get_index(xlat_ctx_t *ctx, const uint64_t *table)
|
|
{
|
|
for (unsigned int i = 0; i < ctx->tables_num; i++)
|
|
if (ctx->tables[i] == table)
|
|
return i;
|
|
|
|
/*
|
|
* Maybe we were asked to get the index of the base level table, which
|
|
* should never happen.
|
|
*/
|
|
assert(0);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Returns a pointer to an empty translation table. */
|
|
static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
|
|
{
|
|
for (unsigned int i = 0; i < ctx->tables_num; i++)
|
|
if (ctx->tables_mapped_regions[i] == 0)
|
|
return ctx->tables[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Increments region count for a given table. */
|
|
static void xlat_table_inc_regions_count(xlat_ctx_t *ctx, const uint64_t *table)
|
|
{
|
|
ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]++;
|
|
}
|
|
|
|
/* Decrements region count for a given table. */
|
|
static void xlat_table_dec_regions_count(xlat_ctx_t *ctx, const uint64_t *table)
|
|
{
|
|
ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]--;
|
|
}
|
|
|
|
/* Returns 0 if the speficied table isn't empty, otherwise 1. */
|
|
static int xlat_table_is_empty(xlat_ctx_t *ctx, const uint64_t *table)
|
|
{
|
|
return !ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)];
|
|
}
|
|
|
|
#else /* PLAT_XLAT_TABLES_DYNAMIC */
|
|
|
|
/* Returns a pointer to the first empty translation table. */
|
|
static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
|
|
{
|
|
assert(ctx->next_table < ctx->tables_num);
|
|
|
|
return ctx->tables[ctx->next_table++];
|
|
}
|
|
|
|
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
|
|
|
|
/*
|
|
* Returns a block/page table descriptor for the given level and attributes.
|
|
*/
|
|
uint64_t xlat_desc(const xlat_ctx_t *ctx, mmap_attr_t attr,
|
|
unsigned long long addr_pa, int level)
|
|
{
|
|
uint64_t desc;
|
|
int mem_type;
|
|
|
|
/* Make sure that the granularity is fine enough to map this address. */
|
|
assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);
|
|
|
|
desc = addr_pa;
|
|
/*
|
|
* There are different translation table descriptors for level 3 and the
|
|
* rest.
|
|
*/
|
|
desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
|
|
/*
|
|
* Always set the access flag, as TF doesn't manage access flag faults.
|
|
* Deduce other fields of the descriptor based on the MT_NS and MT_RW
|
|
* memory region attributes.
|
|
*/
|
|
desc |= LOWER_ATTRS(ACCESS_FLAG);
|
|
|
|
desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
|
|
desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
|
|
|
|
/*
|
|
* Do not allow unprivileged access when the mapping is for a privileged
|
|
* EL. For translation regimes that do not have mappings for access for
|
|
* lower exception levels, set AP[2] to AP_NO_ACCESS_UNPRIVILEGED.
|
|
*/
|
|
if (ctx->xlat_regime == EL1_EL0_REGIME) {
|
|
if (attr & MT_USER) {
|
|
/* EL0 mapping requested, so we give User access */
|
|
desc |= LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED);
|
|
} else {
|
|
/* EL1 mapping requested, no User access granted */
|
|
desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
|
|
}
|
|
} else {
|
|
assert(ctx->xlat_regime == EL3_REGIME);
|
|
desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
|
|
}
|
|
|
|
/*
|
|
* Deduce shareability domain and executability of the memory region
|
|
* from the memory type of the attributes (MT_TYPE).
|
|
*
|
|
* Data accesses to device memory and non-cacheable normal memory are
|
|
* coherent for all observers in the system, and correspondingly are
|
|
* always treated as being Outer Shareable. Therefore, for these 2 types
|
|
* of memory, it is not strictly needed to set the shareability field
|
|
* in the translation tables.
|
|
*/
|
|
mem_type = MT_TYPE(attr);
|
|
if (mem_type == MT_DEVICE) {
|
|
desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
|
|
/*
|
|
* Always map device memory as execute-never.
|
|
* This is to avoid the possibility of a speculative instruction
|
|
* fetch, which could be an issue if this memory region
|
|
* corresponds to a read-sensitive peripheral.
|
|
*/
|
|
desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
|
|
|
|
} else { /* Normal memory */
|
|
/*
|
|
* Always map read-write normal memory as execute-never.
|
|
* (Trusted Firmware doesn't self-modify its code, therefore
|
|
* R/W memory is reserved for data storage, which must not be
|
|
* executable.)
|
|
* Note that setting the XN bit here is for consistency only.
|
|
* The function that enables the MMU sets the SCTLR_ELx.WXN bit,
|
|
* which makes any writable memory region to be treated as
|
|
* execute-never, regardless of the value of the XN bit in the
|
|
* translation table.
|
|
*
|
|
* For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
|
|
* attribute to figure out the value of the XN bit. The actual
|
|
* XN bit(s) to set in the descriptor depends on the context's
|
|
* translation regime and the policy applied in
|
|
* xlat_arch_regime_get_xn_desc().
|
|
*/
|
|
if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
|
|
desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
|
|
}
|
|
|
|
if (mem_type == MT_MEMORY) {
|
|
desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
|
|
} else {
|
|
assert(mem_type == MT_NON_CACHEABLE);
|
|
desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
|
|
}
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
/*
|
|
* Enumeration of actions that can be made when mapping table entries depending
|
|
* on the previous value in that entry and information about the region being
|
|
* mapped.
|
|
*/
|
|
typedef enum {
|
|
|
|
/* Do nothing */
|
|
ACTION_NONE,
|
|
|
|
/* Write a block (or page, if in level 3) entry. */
|
|
ACTION_WRITE_BLOCK_ENTRY,
|
|
|
|
/*
|
|
* Create a new table and write a table entry pointing to it. Recurse
|
|
* into it for further processing.
|
|
*/
|
|
ACTION_CREATE_NEW_TABLE,
|
|
|
|
/*
|
|
* There is a table descriptor in this entry, read it and recurse into
|
|
* that table for further processing.
|
|
*/
|
|
ACTION_RECURSE_INTO_TABLE,
|
|
|
|
} action_t;
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
|
|
/*
|
|
* Recursive function that writes to the translation tables and unmaps the
|
|
* specified region.
|
|
*/
|
|
static void xlat_tables_unmap_region(xlat_ctx_t *ctx, mmap_region_t *mm,
|
|
const uintptr_t table_base_va,
|
|
uint64_t *const table_base,
|
|
const int table_entries,
|
|
const unsigned int level)
|
|
{
|
|
assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX);
|
|
|
|
uint64_t *subtable;
|
|
uint64_t desc;
|
|
|
|
uintptr_t table_idx_va;
|
|
uintptr_t table_idx_end_va; /* End VA of this entry */
|
|
|
|
uintptr_t region_end_va = mm->base_va + mm->size - 1;
|
|
|
|
int table_idx;
|
|
|
|
if (mm->base_va > table_base_va) {
|
|
/* Find the first index of the table affected by the region. */
|
|
table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
|
|
|
|
table_idx = (table_idx_va - table_base_va) >>
|
|
XLAT_ADDR_SHIFT(level);
|
|
|
|
assert(table_idx < table_entries);
|
|
} else {
|
|
/* Start from the beginning of the table. */
|
|
table_idx_va = table_base_va;
|
|
table_idx = 0;
|
|
}
|
|
|
|
while (table_idx < table_entries) {
|
|
|
|
table_idx_end_va = table_idx_va + XLAT_BLOCK_SIZE(level) - 1;
|
|
|
|
desc = table_base[table_idx];
|
|
uint64_t desc_type = desc & DESC_MASK;
|
|
|
|
action_t action = ACTION_NONE;
|
|
|
|
if ((mm->base_va <= table_idx_va) &&
|
|
(region_end_va >= table_idx_end_va)) {
|
|
|
|
/* Region covers all block */
|
|
|
|
if (level == 3) {
|
|
/*
|
|
* Last level, only page descriptors allowed,
|
|
* erase it.
|
|
*/
|
|
assert(desc_type == PAGE_DESC);
|
|
|
|
action = ACTION_WRITE_BLOCK_ENTRY;
|
|
} else {
|
|
/*
|
|
* Other levels can have table descriptors. If
|
|
* so, recurse into it and erase descriptors
|
|
* inside it as needed. If there is a block
|
|
* descriptor, just erase it. If an invalid
|
|
* descriptor is found, this table isn't
|
|
* actually mapped, which shouldn't happen.
|
|
*/
|
|
if (desc_type == TABLE_DESC) {
|
|
action = ACTION_RECURSE_INTO_TABLE;
|
|
} else {
|
|
assert(desc_type == BLOCK_DESC);
|
|
action = ACTION_WRITE_BLOCK_ENTRY;
|
|
}
|
|
}
|
|
|
|
} else if ((mm->base_va <= table_idx_end_va) ||
|
|
(region_end_va >= table_idx_va)) {
|
|
|
|
/*
|
|
* Region partially covers block.
|
|
*
|
|
* It can't happen in level 3.
|
|
*
|
|
* There must be a table descriptor here, if not there
|
|
* was a problem when mapping the region.
|
|
*/
|
|
|
|
assert(level < 3);
|
|
|
|
assert(desc_type == TABLE_DESC);
|
|
|
|
action = ACTION_RECURSE_INTO_TABLE;
|
|
}
|
|
|
|
if (action == ACTION_WRITE_BLOCK_ENTRY) {
|
|
|
|
table_base[table_idx] = INVALID_DESC;
|
|
xlat_arch_tlbi_va_regime(table_idx_va, ctx->xlat_regime);
|
|
|
|
} else if (action == ACTION_RECURSE_INTO_TABLE) {
|
|
|
|
subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
|
|
|
|
/* Recurse to write into subtable */
|
|
xlat_tables_unmap_region(ctx, mm, table_idx_va,
|
|
subtable, XLAT_TABLE_ENTRIES,
|
|
level + 1);
|
|
|
|
/*
|
|
* If the subtable is now empty, remove its reference.
|
|
*/
|
|
if (xlat_table_is_empty(ctx, subtable)) {
|
|
table_base[table_idx] = INVALID_DESC;
|
|
xlat_arch_tlbi_va_regime(table_idx_va,
|
|
ctx->xlat_regime);
|
|
}
|
|
|
|
} else {
|
|
assert(action == ACTION_NONE);
|
|
}
|
|
|
|
table_idx++;
|
|
table_idx_va += XLAT_BLOCK_SIZE(level);
|
|
|
|
/* If reached the end of the region, exit */
|
|
if (region_end_va <= table_idx_va)
|
|
break;
|
|
}
|
|
|
|
if (level > ctx->base_level)
|
|
xlat_table_dec_regions_count(ctx, table_base);
|
|
}
|
|
|
|
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
|
|
|
|
/*
|
|
* From the given arguments, it decides which action to take when mapping the
|
|
* specified region.
|
|
*/
|
|
static action_t xlat_tables_map_region_action(const mmap_region_t *mm,
|
|
const int desc_type, const unsigned long long dest_pa,
|
|
const uintptr_t table_entry_base_va, const unsigned int level)
|
|
{
|
|
uintptr_t mm_end_va = mm->base_va + mm->size - 1;
|
|
uintptr_t table_entry_end_va =
|
|
table_entry_base_va + XLAT_BLOCK_SIZE(level) - 1;
|
|
|
|
/*
|
|
* The descriptor types allowed depend on the current table level.
|
|
*/
|
|
|
|
if ((mm->base_va <= table_entry_base_va) &&
|
|
(mm_end_va >= table_entry_end_va)) {
|
|
|
|
/*
|
|
* Table entry is covered by region
|
|
* --------------------------------
|
|
*
|
|
* This means that this table entry can describe the whole
|
|
* translation with this granularity in principle.
|
|
*/
|
|
|
|
if (level == 3) {
|
|
/*
|
|
* Last level, only page descriptors are allowed.
|
|
*/
|
|
if (desc_type == PAGE_DESC) {
|
|
/*
|
|
* There's another region mapped here, don't
|
|
* overwrite.
|
|
*/
|
|
return ACTION_NONE;
|
|
} else {
|
|
assert(desc_type == INVALID_DESC);
|
|
return ACTION_WRITE_BLOCK_ENTRY;
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
* Other levels. Table descriptors are allowed. Block
|
|
* descriptors too, but they have some limitations.
|
|
*/
|
|
|
|
if (desc_type == TABLE_DESC) {
|
|
/* There's already a table, recurse into it. */
|
|
return ACTION_RECURSE_INTO_TABLE;
|
|
|
|
} else if (desc_type == INVALID_DESC) {
|
|
/*
|
|
* There's nothing mapped here, create a new
|
|
* entry.
|
|
*
|
|
* Check if the destination granularity allows
|
|
* us to use a block descriptor or we need a
|
|
* finer table for it.
|
|
*
|
|
* Also, check if the current level allows block
|
|
* descriptors. If not, create a table instead.
|
|
*/
|
|
if ((dest_pa & XLAT_BLOCK_MASK(level)) ||
|
|
(level < MIN_LVL_BLOCK_DESC) ||
|
|
(mm->granularity < XLAT_BLOCK_SIZE(level)))
|
|
return ACTION_CREATE_NEW_TABLE;
|
|
else
|
|
return ACTION_WRITE_BLOCK_ENTRY;
|
|
|
|
} else {
|
|
/*
|
|
* There's another region mapped here, don't
|
|
* overwrite.
|
|
*/
|
|
assert(desc_type == BLOCK_DESC);
|
|
|
|
return ACTION_NONE;
|
|
}
|
|
}
|
|
|
|
} else if ((mm->base_va <= table_entry_end_va) ||
|
|
(mm_end_va >= table_entry_base_va)) {
|
|
|
|
/*
|
|
* Region partially covers table entry
|
|
* -----------------------------------
|
|
*
|
|
* This means that this table entry can't describe the whole
|
|
* translation, a finer table is needed.
|
|
|
|
* There cannot be partial block overlaps in level 3. If that
|
|
* happens, some of the preliminary checks when adding the
|
|
* mmap region failed to detect that PA and VA must at least be
|
|
* aligned to PAGE_SIZE.
|
|
*/
|
|
assert(level < 3);
|
|
|
|
if (desc_type == INVALID_DESC) {
|
|
/*
|
|
* The block is not fully covered by the region. Create
|
|
* a new table, recurse into it and try to map the
|
|
* region with finer granularity.
|
|
*/
|
|
return ACTION_CREATE_NEW_TABLE;
|
|
|
|
} else {
|
|
assert(desc_type == TABLE_DESC);
|
|
/*
|
|
* The block is not fully covered by the region, but
|
|
* there is already a table here. Recurse into it and
|
|
* try to map with finer granularity.
|
|
*
|
|
* PAGE_DESC for level 3 has the same value as
|
|
* TABLE_DESC, but this code can't run on a level 3
|
|
* table because there can't be overlaps in level 3.
|
|
*/
|
|
return ACTION_RECURSE_INTO_TABLE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This table entry is outside of the region specified in the arguments,
|
|
* don't write anything to it.
|
|
*/
|
|
return ACTION_NONE;
|
|
}
|
|
|
|
/*
|
|
* Recursive function that writes to the translation tables and maps the
|
|
* specified region. On success, it returns the VA of the last byte that was
|
|
* succesfully mapped. On error, it returns the VA of the next entry that
|
|
* should have been mapped.
|
|
*/
|
|
static uintptr_t xlat_tables_map_region(xlat_ctx_t *ctx, mmap_region_t *mm,
|
|
const uintptr_t table_base_va,
|
|
uint64_t *const table_base,
|
|
const int table_entries,
|
|
const unsigned int level)
|
|
{
|
|
assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX);
|
|
|
|
uintptr_t mm_end_va = mm->base_va + mm->size - 1;
|
|
|
|
uintptr_t table_idx_va;
|
|
unsigned long long table_idx_pa;
|
|
|
|
uint64_t *subtable;
|
|
uint64_t desc;
|
|
|
|
int table_idx;
|
|
|
|
if (mm->base_va > table_base_va) {
|
|
/* Find the first index of the table affected by the region. */
|
|
table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
|
|
|
|
table_idx = (table_idx_va - table_base_va) >>
|
|
XLAT_ADDR_SHIFT(level);
|
|
|
|
assert(table_idx < table_entries);
|
|
} else {
|
|
/* Start from the beginning of the table. */
|
|
table_idx_va = table_base_va;
|
|
table_idx = 0;
|
|
}
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
if (level > ctx->base_level)
|
|
xlat_table_inc_regions_count(ctx, table_base);
|
|
#endif
|
|
|
|
while (table_idx < table_entries) {
|
|
|
|
desc = table_base[table_idx];
|
|
|
|
table_idx_pa = mm->base_pa + table_idx_va - mm->base_va;
|
|
|
|
action_t action = xlat_tables_map_region_action(mm,
|
|
desc & DESC_MASK, table_idx_pa, table_idx_va, level);
|
|
|
|
if (action == ACTION_WRITE_BLOCK_ENTRY) {
|
|
|
|
table_base[table_idx] =
|
|
xlat_desc(ctx, mm->attr, table_idx_pa, level);
|
|
|
|
} else if (action == ACTION_CREATE_NEW_TABLE) {
|
|
|
|
subtable = xlat_table_get_empty(ctx);
|
|
if (subtable == NULL) {
|
|
/* Not enough free tables to map this region */
|
|
return table_idx_va;
|
|
}
|
|
|
|
/* Point to new subtable from this one. */
|
|
table_base[table_idx] = TABLE_DESC | (unsigned long)subtable;
|
|
|
|
/* Recurse to write into subtable */
|
|
uintptr_t end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
|
|
subtable, XLAT_TABLE_ENTRIES,
|
|
level + 1);
|
|
if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1)
|
|
return end_va;
|
|
|
|
} else if (action == ACTION_RECURSE_INTO_TABLE) {
|
|
|
|
subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
|
|
/* Recurse to write into subtable */
|
|
uintptr_t end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
|
|
subtable, XLAT_TABLE_ENTRIES,
|
|
level + 1);
|
|
if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1)
|
|
return end_va;
|
|
|
|
} else {
|
|
|
|
assert(action == ACTION_NONE);
|
|
|
|
}
|
|
|
|
table_idx++;
|
|
table_idx_va += XLAT_BLOCK_SIZE(level);
|
|
|
|
/* If reached the end of the region, exit */
|
|
if (mm_end_va <= table_idx_va)
|
|
break;
|
|
}
|
|
|
|
return table_idx_va - 1;
|
|
}
|
|
|
|
void print_mmap(mmap_region_t *const mmap)
|
|
{
|
|
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
|
|
tf_printf("mmap:\n");
|
|
mmap_region_t *mm = mmap;
|
|
|
|
while (mm->size) {
|
|
tf_printf(" VA:%p PA:0x%llx size:0x%zx attr:0x%x",
|
|
(void *)mm->base_va, mm->base_pa,
|
|
mm->size, mm->attr);
|
|
tf_printf(" granularity:0x%zx\n", mm->granularity);
|
|
++mm;
|
|
};
|
|
tf_printf("\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Function that verifies that a region can be mapped.
|
|
* Returns:
|
|
* 0: Success, the mapping is allowed.
|
|
* EINVAL: Invalid values were used as arguments.
|
|
* ERANGE: The memory limits were surpassed.
|
|
* ENOMEM: There is not enough memory in the mmap array.
|
|
* EPERM: Region overlaps another one in an invalid way.
|
|
*/
|
|
static int mmap_add_region_check(xlat_ctx_t *ctx, const mmap_region_t *mm)
|
|
{
|
|
unsigned long long base_pa = mm->base_pa;
|
|
uintptr_t base_va = mm->base_va;
|
|
size_t size = mm->size;
|
|
size_t granularity = mm->granularity;
|
|
|
|
unsigned long long end_pa = base_pa + size - 1;
|
|
uintptr_t end_va = base_va + size - 1;
|
|
|
|
if (!IS_PAGE_ALIGNED(base_pa) || !IS_PAGE_ALIGNED(base_va) ||
|
|
!IS_PAGE_ALIGNED(size))
|
|
return -EINVAL;
|
|
|
|
if ((granularity != XLAT_BLOCK_SIZE(1)) &&
|
|
(granularity != XLAT_BLOCK_SIZE(2)) &&
|
|
(granularity != XLAT_BLOCK_SIZE(3))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check for overflows */
|
|
if ((base_pa > end_pa) || (base_va > end_va))
|
|
return -ERANGE;
|
|
|
|
if ((base_va + (uintptr_t)size - (uintptr_t)1) > ctx->va_max_address)
|
|
return -ERANGE;
|
|
|
|
if ((base_pa + (unsigned long long)size - 1ULL) > ctx->pa_max_address)
|
|
return -ERANGE;
|
|
|
|
/* Check that there is space in the ctx->mmap array */
|
|
if (ctx->mmap[ctx->mmap_num - 1].size != 0)
|
|
return -ENOMEM;
|
|
|
|
/* Check for PAs and VAs overlaps with all other regions */
|
|
for (mmap_region_t *mm_cursor = ctx->mmap;
|
|
mm_cursor->size; ++mm_cursor) {
|
|
|
|
uintptr_t mm_cursor_end_va = mm_cursor->base_va
|
|
+ mm_cursor->size - 1;
|
|
|
|
/*
|
|
* Check if one of the regions is completely inside the other
|
|
* one.
|
|
*/
|
|
int fully_overlapped_va =
|
|
((base_va >= mm_cursor->base_va) &&
|
|
(end_va <= mm_cursor_end_va)) ||
|
|
|
|
((mm_cursor->base_va >= base_va) &&
|
|
(mm_cursor_end_va <= end_va));
|
|
|
|
/*
|
|
* Full VA overlaps are only allowed if both regions are
|
|
* identity mapped (zero offset) or have the same VA to PA
|
|
* offset. Also, make sure that it's not the exact same area.
|
|
* This can only be done with static regions.
|
|
*/
|
|
if (fully_overlapped_va) {
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
if ((mm->attr & MT_DYNAMIC) ||
|
|
(mm_cursor->attr & MT_DYNAMIC))
|
|
return -EPERM;
|
|
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
|
|
if ((mm_cursor->base_va - mm_cursor->base_pa) !=
|
|
(base_va - base_pa))
|
|
return -EPERM;
|
|
|
|
if ((base_va == mm_cursor->base_va) &&
|
|
(size == mm_cursor->size))
|
|
return -EPERM;
|
|
|
|
} else {
|
|
/*
|
|
* If the regions do not have fully overlapping VAs,
|
|
* then they must have fully separated VAs and PAs.
|
|
* Partial overlaps are not allowed
|
|
*/
|
|
|
|
unsigned long long mm_cursor_end_pa =
|
|
mm_cursor->base_pa + mm_cursor->size - 1;
|
|
|
|
int separated_pa =
|
|
(end_pa < mm_cursor->base_pa) ||
|
|
(base_pa > mm_cursor_end_pa);
|
|
int separated_va =
|
|
(end_va < mm_cursor->base_va) ||
|
|
(base_va > mm_cursor_end_va);
|
|
|
|
if (!(separated_va && separated_pa))
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
|
|
{
|
|
mmap_region_t *mm_cursor = ctx->mmap;
|
|
mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
|
|
unsigned long long end_pa = mm->base_pa + mm->size - 1;
|
|
uintptr_t end_va = mm->base_va + mm->size - 1;
|
|
int ret;
|
|
|
|
/* Ignore empty regions */
|
|
if (!mm->size)
|
|
return;
|
|
|
|
/* Static regions must be added before initializing the xlat tables. */
|
|
assert(!ctx->initialized);
|
|
|
|
ret = mmap_add_region_check(ctx, mm);
|
|
if (ret != 0) {
|
|
ERROR("mmap_add_region_check() failed. error %d\n", ret);
|
|
assert(0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find correct place in mmap to insert new region.
|
|
*
|
|
* 1 - Lower region VA end first.
|
|
* 2 - Smaller region size first.
|
|
*
|
|
* VA 0 0xFF
|
|
*
|
|
* 1st |------|
|
|
* 2nd |------------|
|
|
* 3rd |------|
|
|
* 4th |---|
|
|
* 5th |---|
|
|
* 6th |----------|
|
|
* 7th |-------------------------------------|
|
|
*
|
|
* This is required for overlapping regions only. It simplifies adding
|
|
* regions with the loop in xlat_tables_init_internal because the outer
|
|
* ones won't overwrite block or page descriptors of regions added
|
|
* previously.
|
|
*
|
|
* Overlapping is only allowed for static regions.
|
|
*/
|
|
|
|
while ((mm_cursor->base_va + mm_cursor->size - 1) < end_va
|
|
&& mm_cursor->size)
|
|
++mm_cursor;
|
|
|
|
while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va)
|
|
&& (mm_cursor->size < mm->size))
|
|
++mm_cursor;
|
|
|
|
/* Make room for new region by moving other regions up by one place */
|
|
memmove(mm_cursor + 1, mm_cursor,
|
|
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
|
|
|
|
/*
|
|
* Check we haven't lost the empty sentinel from the end of the array.
|
|
* This shouldn't happen as we have checked in mmap_add_region_check
|
|
* that there is free space.
|
|
*/
|
|
assert(mm_last->size == 0);
|
|
|
|
*mm_cursor = *mm;
|
|
|
|
if (end_pa > ctx->max_pa)
|
|
ctx->max_pa = end_pa;
|
|
if (end_va > ctx->max_va)
|
|
ctx->max_va = end_va;
|
|
}
|
|
|
|
void mmap_add_region(unsigned long long base_pa,
|
|
uintptr_t base_va,
|
|
size_t size,
|
|
mmap_attr_t attr)
|
|
{
|
|
mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
|
|
mmap_add_region_ctx(&tf_xlat_ctx, &mm);
|
|
}
|
|
|
|
|
|
void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
|
|
{
|
|
while (mm->size) {
|
|
mmap_add_region_ctx(ctx, mm);
|
|
mm++;
|
|
}
|
|
}
|
|
|
|
void mmap_add(const mmap_region_t *mm)
|
|
{
|
|
mmap_add_ctx(&tf_xlat_ctx, mm);
|
|
}
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
|
|
int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
|
|
{
|
|
mmap_region_t *mm_cursor = ctx->mmap;
|
|
mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
|
|
unsigned long long end_pa = mm->base_pa + mm->size - 1;
|
|
uintptr_t end_va = mm->base_va + mm->size - 1;
|
|
int ret;
|
|
|
|
/* Nothing to do */
|
|
if (!mm->size)
|
|
return 0;
|
|
|
|
/* Now this region is a dynamic one */
|
|
mm->attr |= MT_DYNAMIC;
|
|
|
|
ret = mmap_add_region_check(ctx, mm);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Find the adequate entry in the mmap array in the same way done for
|
|
* static regions in mmap_add_region_ctx().
|
|
*/
|
|
|
|
while ((mm_cursor->base_va + mm_cursor->size - 1)
|
|
< end_va && mm_cursor->size)
|
|
++mm_cursor;
|
|
|
|
while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va)
|
|
&& (mm_cursor->size < mm->size))
|
|
++mm_cursor;
|
|
|
|
/* Make room for new region by moving other regions up by one place */
|
|
memmove(mm_cursor + 1, mm_cursor,
|
|
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
|
|
|
|
/*
|
|
* Check we haven't lost the empty sentinal from the end of the array.
|
|
* This shouldn't happen as we have checked in mmap_add_region_check
|
|
* that there is free space.
|
|
*/
|
|
assert(mm_last->size == 0);
|
|
|
|
*mm_cursor = *mm;
|
|
|
|
/*
|
|
* Update the translation tables if the xlat tables are initialized. If
|
|
* not, this region will be mapped when they are initialized.
|
|
*/
|
|
if (ctx->initialized) {
|
|
uintptr_t end_va = xlat_tables_map_region(ctx, mm_cursor,
|
|
0, ctx->base_table, ctx->base_table_entries,
|
|
ctx->base_level);
|
|
|
|
/* Failed to map, remove mmap entry, unmap and return error. */
|
|
if (end_va != mm_cursor->base_va + mm_cursor->size - 1) {
|
|
memmove(mm_cursor, mm_cursor + 1,
|
|
(uintptr_t)mm_last - (uintptr_t)mm_cursor);
|
|
|
|
/*
|
|
* Check if the mapping function actually managed to map
|
|
* anything. If not, just return now.
|
|
*/
|
|
if (mm_cursor->base_va >= end_va)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Something went wrong after mapping some table
|
|
* entries, undo every change done up to this point.
|
|
*/
|
|
mmap_region_t unmap_mm = {
|
|
.base_pa = 0,
|
|
.base_va = mm->base_va,
|
|
.size = end_va - mm->base_va,
|
|
.attr = 0
|
|
};
|
|
xlat_tables_unmap_region(ctx, &unmap_mm, 0, ctx->base_table,
|
|
ctx->base_table_entries, ctx->base_level);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Make sure that all entries are written to the memory. There
|
|
* is no need to invalidate entries when mapping dynamic regions
|
|
* because new table/block/page descriptors only replace old
|
|
* invalid descriptors, that aren't TLB cached.
|
|
*/
|
|
dsbishst();
|
|
}
|
|
|
|
if (end_pa > ctx->max_pa)
|
|
ctx->max_pa = end_pa;
|
|
if (end_va > ctx->max_va)
|
|
ctx->max_va = end_va;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mmap_add_dynamic_region(unsigned long long base_pa,
|
|
uintptr_t base_va, size_t size, mmap_attr_t attr)
|
|
{
|
|
mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
|
|
return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
|
|
}
|
|
|
|
/*
|
|
* Removes the region with given base Virtual Address and size from the given
|
|
* context.
|
|
*
|
|
* Returns:
|
|
* 0: Success.
|
|
* EINVAL: Invalid values were used as arguments (region not found).
|
|
* EPERM: Tried to remove a static region.
|
|
*/
|
|
int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va,
|
|
size_t size)
|
|
{
|
|
mmap_region_t *mm = ctx->mmap;
|
|
mmap_region_t *mm_last = mm + ctx->mmap_num;
|
|
int update_max_va_needed = 0;
|
|
int update_max_pa_needed = 0;
|
|
|
|
/* Check sanity of mmap array. */
|
|
assert(mm[ctx->mmap_num].size == 0);
|
|
|
|
while (mm->size) {
|
|
if ((mm->base_va == base_va) && (mm->size == size))
|
|
break;
|
|
++mm;
|
|
}
|
|
|
|
/* Check that the region was found */
|
|
if (mm->size == 0)
|
|
return -EINVAL;
|
|
|
|
/* If the region is static it can't be removed */
|
|
if (!(mm->attr & MT_DYNAMIC))
|
|
return -EPERM;
|
|
|
|
/* Check if this region is using the top VAs or PAs. */
|
|
if ((mm->base_va + mm->size - 1) == ctx->max_va)
|
|
update_max_va_needed = 1;
|
|
if ((mm->base_pa + mm->size - 1) == ctx->max_pa)
|
|
update_max_pa_needed = 1;
|
|
|
|
/* Update the translation tables if needed */
|
|
if (ctx->initialized) {
|
|
xlat_tables_unmap_region(ctx, mm, 0, ctx->base_table,
|
|
ctx->base_table_entries,
|
|
ctx->base_level);
|
|
xlat_arch_tlbi_va_sync();
|
|
}
|
|
|
|
/* Remove this region by moving the rest down by one place. */
|
|
memmove(mm, mm + 1, (uintptr_t)mm_last - (uintptr_t)mm);
|
|
|
|
/* Check if we need to update the max VAs and PAs */
|
|
if (update_max_va_needed) {
|
|
ctx->max_va = 0;
|
|
mm = ctx->mmap;
|
|
while (mm->size) {
|
|
if ((mm->base_va + mm->size - 1) > ctx->max_va)
|
|
ctx->max_va = mm->base_va + mm->size - 1;
|
|
++mm;
|
|
}
|
|
}
|
|
|
|
if (update_max_pa_needed) {
|
|
ctx->max_pa = 0;
|
|
mm = ctx->mmap;
|
|
while (mm->size) {
|
|
if ((mm->base_pa + mm->size - 1) > ctx->max_pa)
|
|
ctx->max_pa = mm->base_pa + mm->size - 1;
|
|
++mm;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
|
|
{
|
|
return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
|
|
base_va, size);
|
|
}
|
|
|
|
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
|
|
|
|
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
|
|
|
|
/* Print the attributes of the specified block descriptor. */
|
|
static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc)
|
|
{
|
|
int mem_type_index = ATTR_INDEX_GET(desc);
|
|
xlat_regime_t xlat_regime = ctx->xlat_regime;
|
|
|
|
if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
|
|
tf_printf("MEM");
|
|
} else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) {
|
|
tf_printf("NC");
|
|
} else {
|
|
assert(mem_type_index == ATTR_DEVICE_INDEX);
|
|
tf_printf("DEV");
|
|
}
|
|
|
|
const char *priv_str = "(PRIV)";
|
|
const char *user_str = "(USER)";
|
|
|
|
/*
|
|
* Showing Privileged vs Unprivileged only makes sense for EL1&0
|
|
* mappings
|
|
*/
|
|
const char *ro_str = "-RO";
|
|
const char *rw_str = "-RW";
|
|
const char *no_access_str = "-NOACCESS";
|
|
|
|
if (xlat_regime == EL3_REGIME) {
|
|
/* For EL3, the AP[2] bit is all what matters */
|
|
tf_printf((desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str);
|
|
} else {
|
|
const char *ap_str = (desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str;
|
|
tf_printf(ap_str);
|
|
tf_printf(priv_str);
|
|
/*
|
|
* EL0 can only have the same permissions as EL1 or no
|
|
* permissions at all.
|
|
*/
|
|
tf_printf((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED))
|
|
? ap_str : no_access_str);
|
|
tf_printf(user_str);
|
|
}
|
|
|
|
const char *xn_str = "-XN";
|
|
const char *exec_str = "-EXEC";
|
|
|
|
if (xlat_regime == EL3_REGIME) {
|
|
/* For EL3, the XN bit is all what matters */
|
|
tf_printf(LOWER_ATTRS(XN) & desc ? xn_str : exec_str);
|
|
} else {
|
|
/* For EL0 and EL1, we need to know who has which rights */
|
|
tf_printf(LOWER_ATTRS(PXN) & desc ? xn_str : exec_str);
|
|
tf_printf(priv_str);
|
|
|
|
tf_printf(LOWER_ATTRS(UXN) & desc ? xn_str : exec_str);
|
|
tf_printf(user_str);
|
|
}
|
|
|
|
tf_printf(LOWER_ATTRS(NS) & desc ? "-NS" : "-S");
|
|
}
|
|
|
|
static const char * const level_spacers[] = {
|
|
"[LV0] ",
|
|
" [LV1] ",
|
|
" [LV2] ",
|
|
" [LV3] "
|
|
};
|
|
|
|
static const char *invalid_descriptors_ommited =
|
|
"%s(%d invalid descriptors omitted)\n";
|
|
|
|
/*
|
|
* Recursive function that reads the translation tables passed as an argument
|
|
* and prints their status.
|
|
*/
|
|
static void xlat_tables_print_internal(xlat_ctx_t *ctx,
|
|
const uintptr_t table_base_va,
|
|
uint64_t *const table_base, const int table_entries,
|
|
const unsigned int level)
|
|
{
|
|
assert(level <= XLAT_TABLE_LEVEL_MAX);
|
|
|
|
uint64_t desc;
|
|
uintptr_t table_idx_va = table_base_va;
|
|
int table_idx = 0;
|
|
|
|
size_t level_size = XLAT_BLOCK_SIZE(level);
|
|
|
|
/*
|
|
* Keep track of how many invalid descriptors are counted in a row.
|
|
* Whenever multiple invalid descriptors are found, only the first one
|
|
* is printed, and a line is added to inform about how many descriptors
|
|
* have been omitted.
|
|
*/
|
|
int invalid_row_count = 0;
|
|
|
|
while (table_idx < table_entries) {
|
|
|
|
desc = table_base[table_idx];
|
|
|
|
if ((desc & DESC_MASK) == INVALID_DESC) {
|
|
|
|
if (invalid_row_count == 0) {
|
|
tf_printf("%sVA:%p size:0x%zx\n",
|
|
level_spacers[level],
|
|
(void *)table_idx_va, level_size);
|
|
}
|
|
invalid_row_count++;
|
|
|
|
} else {
|
|
|
|
if (invalid_row_count > 1) {
|
|
tf_printf(invalid_descriptors_ommited,
|
|
level_spacers[level],
|
|
invalid_row_count - 1);
|
|
}
|
|
invalid_row_count = 0;
|
|
|
|
/*
|
|
* Check if this is a table or a block. Tables are only
|
|
* allowed in levels other than 3, but DESC_PAGE has the
|
|
* same value as DESC_TABLE, so we need to check.
|
|
*/
|
|
if (((desc & DESC_MASK) == TABLE_DESC) &&
|
|
(level < XLAT_TABLE_LEVEL_MAX)) {
|
|
/*
|
|
* Do not print any PA for a table descriptor,
|
|
* as it doesn't directly map physical memory
|
|
* but instead points to the next translation
|
|
* table in the translation table walk.
|
|
*/
|
|
tf_printf("%sVA:%p size:0x%zx\n",
|
|
level_spacers[level],
|
|
(void *)table_idx_va, level_size);
|
|
|
|
uintptr_t addr_inner = desc & TABLE_ADDR_MASK;
|
|
|
|
xlat_tables_print_internal(ctx, table_idx_va,
|
|
(uint64_t *)addr_inner,
|
|
XLAT_TABLE_ENTRIES, level + 1);
|
|
} else {
|
|
tf_printf("%sVA:%p PA:0x%llx size:0x%zx ",
|
|
level_spacers[level],
|
|
(void *)table_idx_va,
|
|
(unsigned long long)(desc & TABLE_ADDR_MASK),
|
|
level_size);
|
|
xlat_desc_print(ctx, desc);
|
|
tf_printf("\n");
|
|
}
|
|
}
|
|
|
|
table_idx++;
|
|
table_idx_va += level_size;
|
|
}
|
|
|
|
if (invalid_row_count > 1) {
|
|
tf_printf(invalid_descriptors_ommited,
|
|
level_spacers[level], invalid_row_count - 1);
|
|
}
|
|
}
|
|
|
|
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
|
|
void xlat_tables_print(xlat_ctx_t *ctx)
|
|
{
|
|
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
|
|
const char *xlat_regime_str;
|
|
if (ctx->xlat_regime == EL1_EL0_REGIME) {
|
|
xlat_regime_str = "1&0";
|
|
} else {
|
|
assert(ctx->xlat_regime == EL3_REGIME);
|
|
xlat_regime_str = "3";
|
|
}
|
|
VERBOSE("Translation tables state:\n");
|
|
VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str);
|
|
VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address);
|
|
VERBOSE(" Max allowed VA: %p\n", (void *) ctx->va_max_address);
|
|
VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa);
|
|
VERBOSE(" Max mapped VA: %p\n", (void *) ctx->max_va);
|
|
|
|
VERBOSE(" Initial lookup level: %i\n", ctx->base_level);
|
|
VERBOSE(" Entries @initial lookup level: %i\n",
|
|
ctx->base_table_entries);
|
|
|
|
int used_page_tables;
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
used_page_tables = 0;
|
|
for (unsigned int i = 0; i < ctx->tables_num; ++i) {
|
|
if (ctx->tables_mapped_regions[i] != 0)
|
|
++used_page_tables;
|
|
}
|
|
#else
|
|
used_page_tables = ctx->next_table;
|
|
#endif
|
|
VERBOSE(" Used %i sub-tables out of %i (spare: %i)\n",
|
|
used_page_tables, ctx->tables_num,
|
|
ctx->tables_num - used_page_tables);
|
|
|
|
xlat_tables_print_internal(ctx, 0, ctx->base_table,
|
|
ctx->base_table_entries, ctx->base_level);
|
|
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
}
|
|
|
|
void init_xlat_tables_ctx(xlat_ctx_t *ctx)
|
|
{
|
|
assert(ctx != NULL);
|
|
assert(!ctx->initialized);
|
|
assert(ctx->xlat_regime == EL3_REGIME || ctx->xlat_regime == EL1_EL0_REGIME);
|
|
assert(!is_mmu_enabled_ctx(ctx));
|
|
|
|
mmap_region_t *mm = ctx->mmap;
|
|
|
|
print_mmap(mm);
|
|
|
|
/* All tables must be zeroed before mapping any region. */
|
|
|
|
for (unsigned int i = 0; i < ctx->base_table_entries; i++)
|
|
ctx->base_table[i] = INVALID_DESC;
|
|
|
|
for (unsigned int j = 0; j < ctx->tables_num; j++) {
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
ctx->tables_mapped_regions[j] = 0;
|
|
#endif
|
|
for (unsigned int i = 0; i < XLAT_TABLE_ENTRIES; i++)
|
|
ctx->tables[j][i] = INVALID_DESC;
|
|
}
|
|
|
|
while (mm->size) {
|
|
uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0, ctx->base_table,
|
|
ctx->base_table_entries, ctx->base_level);
|
|
|
|
if (end_va != mm->base_va + mm->size - 1) {
|
|
ERROR("Not enough memory to map region:\n"
|
|
" VA:%p PA:0x%llx size:0x%zx attr:0x%x\n",
|
|
(void *)mm->base_va, mm->base_pa, mm->size, mm->attr);
|
|
panic();
|
|
}
|
|
|
|
mm++;
|
|
}
|
|
|
|
assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());
|
|
assert(ctx->max_va <= ctx->va_max_address);
|
|
assert(ctx->max_pa <= ctx->pa_max_address);
|
|
|
|
ctx->initialized = 1;
|
|
|
|
xlat_tables_print(ctx);
|
|
}
|
|
|
|
void init_xlat_tables(void)
|
|
{
|
|
init_xlat_tables_ctx(&tf_xlat_ctx);
|
|
}
|
|
|
|
/*
|
|
* If dynamic allocation of new regions is disabled then by the time we call the
|
|
* function enabling the MMU, we'll have registered all the memory regions to
|
|
* map for the system's lifetime. Therefore, at this point we know the maximum
|
|
* physical address that will ever be mapped.
|
|
*
|
|
* If dynamic allocation is enabled then we can't make any such assumption
|
|
* because the maximum physical address could get pushed while adding a new
|
|
* region. Therefore, in this case we have to assume that the whole address
|
|
* space size might be mapped.
|
|
*/
|
|
#ifdef PLAT_XLAT_TABLES_DYNAMIC
|
|
#define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address
|
|
#else
|
|
#define MAX_PHYS_ADDR tf_xlat_ctx.max_pa
|
|
#endif
|
|
|
|
#ifdef AARCH32
|
|
|
|
void enable_mmu_secure(unsigned int flags)
|
|
{
|
|
enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
|
|
tf_xlat_ctx.va_max_address);
|
|
}
|
|
|
|
#else
|
|
|
|
void enable_mmu_el1(unsigned int flags)
|
|
{
|
|
enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
|
|
tf_xlat_ctx.va_max_address);
|
|
}
|
|
|
|
void enable_mmu_el3(unsigned int flags)
|
|
{
|
|
enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
|
|
tf_xlat_ctx.va_max_address);
|
|
}
|
|
|
|
#endif /* AARCH32 */
|
|
|
|
/*
|
|
* Do a translation table walk to find the block or page descriptor that maps
|
|
* virtual_addr.
|
|
*
|
|
* On success, return the address of the descriptor within the translation
|
|
* table. Its lookup level is stored in '*out_level'.
|
|
* On error, return NULL.
|
|
*
|
|
* xlat_table_base
|
|
* Base address for the initial lookup level.
|
|
* xlat_table_base_entries
|
|
* Number of entries in the translation table for the initial lookup level.
|
|
* virt_addr_space_size
|
|
* Size in bytes of the virtual address space.
|
|
*/
|
|
static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr,
|
|
void *xlat_table_base,
|
|
int xlat_table_base_entries,
|
|
unsigned long long virt_addr_space_size,
|
|
int *out_level)
|
|
{
|
|
unsigned int start_level;
|
|
uint64_t *table;
|
|
int entries;
|
|
|
|
VERBOSE("%s(%p)\n", __func__, (void *)virtual_addr);
|
|
|
|
start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size);
|
|
VERBOSE("Starting translation table walk from level %i\n", start_level);
|
|
|
|
table = xlat_table_base;
|
|
entries = xlat_table_base_entries;
|
|
|
|
for (unsigned int level = start_level;
|
|
level <= XLAT_TABLE_LEVEL_MAX;
|
|
++level) {
|
|
int idx;
|
|
uint64_t desc;
|
|
uint64_t desc_type;
|
|
|
|
VERBOSE("Table address: %p\n", (void *)table);
|
|
|
|
idx = XLAT_TABLE_IDX(virtual_addr, level);
|
|
VERBOSE("Index into level %i table: %i\n", level, idx);
|
|
if (idx >= entries) {
|
|
VERBOSE("Invalid address\n");
|
|
return NULL;
|
|
}
|
|
|
|
desc = table[idx];
|
|
desc_type = desc & DESC_MASK;
|
|
VERBOSE("Descriptor at level %i: 0x%llx\n", level,
|
|
(unsigned long long)desc);
|
|
|
|
if (desc_type == INVALID_DESC) {
|
|
VERBOSE("Invalid entry (memory not mapped)\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (level == XLAT_TABLE_LEVEL_MAX) {
|
|
/*
|
|
* There can't be table entries at the final lookup
|
|
* level.
|
|
*/
|
|
assert(desc_type == PAGE_DESC);
|
|
VERBOSE("Descriptor mapping a memory page (size: 0x%llx)\n",
|
|
(unsigned long long)XLAT_BLOCK_SIZE(XLAT_TABLE_LEVEL_MAX));
|
|
*out_level = level;
|
|
return &table[idx];
|
|
}
|
|
|
|
if (desc_type == BLOCK_DESC) {
|
|
VERBOSE("Descriptor mapping a memory block (size: 0x%llx)\n",
|
|
(unsigned long long)XLAT_BLOCK_SIZE(level));
|
|
*out_level = level;
|
|
return &table[idx];
|
|
}
|
|
|
|
assert(desc_type == TABLE_DESC);
|
|
VERBOSE("Table descriptor, continuing xlat table walk...\n");
|
|
table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
|
|
entries = XLAT_TABLE_ENTRIES;
|
|
}
|
|
|
|
/*
|
|
* This shouldn't be reached, the translation table walk should end at
|
|
* most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop.
|
|
*/
|
|
assert(0);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int get_mem_attributes_internal(const xlat_ctx_t *ctx, uintptr_t base_va,
|
|
mmap_attr_t *attributes, uint64_t **table_entry,
|
|
unsigned long long *addr_pa, int *table_level)
|
|
{
|
|
uint64_t *entry;
|
|
uint64_t desc;
|
|
int level;
|
|
unsigned long long virt_addr_space_size;
|
|
|
|
/*
|
|
* Sanity-check arguments.
|
|
*/
|
|
assert(ctx != NULL);
|
|
assert(ctx->initialized);
|
|
assert(ctx->xlat_regime == EL1_EL0_REGIME || ctx->xlat_regime == EL3_REGIME);
|
|
|
|
virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1;
|
|
assert(virt_addr_space_size > 0);
|
|
|
|
entry = find_xlat_table_entry(base_va,
|
|
ctx->base_table,
|
|
ctx->base_table_entries,
|
|
virt_addr_space_size,
|
|
&level);
|
|
if (entry == NULL) {
|
|
WARN("Address %p is not mapped.\n", (void *)base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (addr_pa != NULL) {
|
|
*addr_pa = *entry & TABLE_ADDR_MASK;
|
|
}
|
|
|
|
if (table_entry != NULL) {
|
|
*table_entry = entry;
|
|
}
|
|
|
|
if (table_level != NULL) {
|
|
*table_level = level;
|
|
}
|
|
|
|
desc = *entry;
|
|
|
|
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
|
|
VERBOSE("Attributes: ");
|
|
xlat_desc_print(ctx, desc);
|
|
tf_printf("\n");
|
|
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
|
|
assert(attributes != NULL);
|
|
*attributes = 0;
|
|
|
|
int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
|
|
|
|
if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
|
|
*attributes |= MT_MEMORY;
|
|
} else if (attr_index == ATTR_NON_CACHEABLE_INDEX) {
|
|
*attributes |= MT_NON_CACHEABLE;
|
|
} else {
|
|
assert(attr_index == ATTR_DEVICE_INDEX);
|
|
*attributes |= MT_DEVICE;
|
|
}
|
|
|
|
int ap2_bit = (desc >> AP2_SHIFT) & 1;
|
|
|
|
if (ap2_bit == AP2_RW)
|
|
*attributes |= MT_RW;
|
|
|
|
if (ctx->xlat_regime == EL1_EL0_REGIME) {
|
|
int ap1_bit = (desc >> AP1_SHIFT) & 1;
|
|
if (ap1_bit == AP1_ACCESS_UNPRIVILEGED)
|
|
*attributes |= MT_USER;
|
|
}
|
|
|
|
int ns_bit = (desc >> NS_SHIFT) & 1;
|
|
|
|
if (ns_bit == 1)
|
|
*attributes |= MT_NS;
|
|
|
|
uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
|
|
|
|
if ((desc & xn_mask) == xn_mask) {
|
|
*attributes |= MT_EXECUTE_NEVER;
|
|
} else {
|
|
assert((desc & xn_mask) == 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va,
|
|
mmap_attr_t *attributes)
|
|
{
|
|
return get_mem_attributes_internal(ctx, base_va, attributes,
|
|
NULL, NULL, NULL);
|
|
}
|
|
|
|
|
|
int change_mem_attributes(xlat_ctx_t *ctx,
|
|
uintptr_t base_va,
|
|
size_t size,
|
|
mmap_attr_t attr)
|
|
{
|
|
/* Note: This implementation isn't optimized. */
|
|
|
|
assert(ctx != NULL);
|
|
assert(ctx->initialized);
|
|
|
|
unsigned long long virt_addr_space_size =
|
|
(unsigned long long)ctx->va_max_address + 1;
|
|
assert(virt_addr_space_size > 0);
|
|
|
|
if (!IS_PAGE_ALIGNED(base_va)) {
|
|
WARN("%s: Address %p is not aligned on a page boundary.\n",
|
|
__func__, (void *)base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (size == 0) {
|
|
WARN("%s: Size is 0.\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((size % PAGE_SIZE) != 0) {
|
|
WARN("%s: Size 0x%zx is not a multiple of a page size.\n",
|
|
__func__, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((attr & MT_EXECUTE_NEVER) == 0) && ((attr & MT_RW) != 0)) {
|
|
WARN("%s() doesn't allow to remap memory as read-write and executable.\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int pages_count = size / PAGE_SIZE;
|
|
|
|
VERBOSE("Changing memory attributes of %i pages starting from address %p...\n",
|
|
pages_count, (void *)base_va);
|
|
|
|
uintptr_t base_va_original = base_va;
|
|
|
|
/*
|
|
* Sanity checks.
|
|
*/
|
|
for (int i = 0; i < pages_count; ++i) {
|
|
uint64_t *entry;
|
|
uint64_t desc;
|
|
int level;
|
|
|
|
entry = find_xlat_table_entry(base_va,
|
|
ctx->base_table,
|
|
ctx->base_table_entries,
|
|
virt_addr_space_size,
|
|
&level);
|
|
if (entry == NULL) {
|
|
WARN("Address %p is not mapped.\n", (void *)base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc = *entry;
|
|
|
|
/*
|
|
* Check that all the required pages are mapped at page
|
|
* granularity.
|
|
*/
|
|
if (((desc & DESC_MASK) != PAGE_DESC) ||
|
|
(level != XLAT_TABLE_LEVEL_MAX)) {
|
|
WARN("Address %p is not mapped at the right granularity.\n",
|
|
(void *)base_va);
|
|
WARN("Granularity is 0x%llx, should be 0x%x.\n",
|
|
(unsigned long long)XLAT_BLOCK_SIZE(level), PAGE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the region type is device, it shouldn't be executable.
|
|
*/
|
|
int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
|
|
if (attr_index == ATTR_DEVICE_INDEX) {
|
|
if ((attr & MT_EXECUTE_NEVER) == 0) {
|
|
WARN("Setting device memory as executable at address %p.",
|
|
(void *)base_va);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
base_va += PAGE_SIZE;
|
|
}
|
|
|
|
/* Restore original value. */
|
|
base_va = base_va_original;
|
|
|
|
VERBOSE("%s: All pages are mapped, now changing their attributes...\n",
|
|
__func__);
|
|
|
|
for (int i = 0; i < pages_count; ++i) {
|
|
|
|
mmap_attr_t old_attr, new_attr;
|
|
uint64_t *entry;
|
|
int level;
|
|
unsigned long long addr_pa;
|
|
|
|
get_mem_attributes_internal(ctx, base_va, &old_attr,
|
|
&entry, &addr_pa, &level);
|
|
|
|
VERBOSE("Old attributes: 0x%x\n", old_attr);
|
|
|
|
/*
|
|
* From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and
|
|
* MT_USER/MT_PRIVILEGED are taken into account. Any other
|
|
* information is ignored.
|
|
*/
|
|
|
|
/* Clean the old attributes so that they can be rebuilt. */
|
|
new_attr = old_attr & ~(MT_RW|MT_EXECUTE_NEVER|MT_USER);
|
|
|
|
/*
|
|
* Update attributes, but filter out the ones this function
|
|
* isn't allowed to change.
|
|
*/
|
|
new_attr |= attr & (MT_RW|MT_EXECUTE_NEVER|MT_USER);
|
|
|
|
VERBOSE("New attributes: 0x%x\n", new_attr);
|
|
|
|
/*
|
|
* The break-before-make sequence requires writing an invalid
|
|
* descriptor and making sure that the system sees the change
|
|
* before writing the new descriptor.
|
|
*/
|
|
*entry = INVALID_DESC;
|
|
|
|
/* Invalidate any cached copy of this mapping in the TLBs. */
|
|
xlat_arch_tlbi_va_regime(base_va, ctx->xlat_regime);
|
|
|
|
/* Ensure completion of the invalidation. */
|
|
xlat_arch_tlbi_va_sync();
|
|
|
|
/* Write new descriptor */
|
|
*entry = xlat_desc(ctx, new_attr, addr_pa, level);
|
|
|
|
base_va += PAGE_SIZE;
|
|
}
|
|
|
|
/* Ensure that the last descriptor writen is seen by the system. */
|
|
dsbish();
|
|
|
|
return 0;
|
|
}
|
|
|