|
|
|
//! Small example of how to use `externref`s.
|
|
|
|
|
|
|
|
// You can execute this example with `cargo run --example externref`
|
|
|
|
|
|
|
|
use wasmtime::*;
|
|
|
|
|
|
|
|
fn main() -> Result<()> {
|
|
|
|
println!("Initializing...");
|
|
|
|
let mut config = Config::new();
|
|
|
|
config.wasm_reference_types(true);
|
Implement shared host functions. (#2625)
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
4 years ago
|
|
|
let engine = Engine::new(&config)?;
|
|
|
|
let mut store = Store::new(&engine, ());
|
|
|
|
|
|
|
|
println!("Compiling module...");
|
|
|
|
let module = Module::from_file(&engine, "examples/externref.wat")?;
|
|
|
|
|
|
|
|
println!("Instantiating module...");
|
|
|
|
let instance = Instance::new(&mut store, &module, &[])?;
|
|
|
|
|
|
|
|
println!("Creating new `externref`...");
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
let externref = ExternRef::new(&mut store, "Hello, World!");
|
|
|
|
assert!(externref.data(&store)?.is::<&'static str>());
|
|
|
|
assert_eq!(
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
*externref
|
|
|
|
.data(&store)?
|
|
|
|
.downcast_ref::<&'static str>()
|
|
|
|
.unwrap(),
|
|
|
|
"Hello, World!"
|
|
|
|
);
|
|
|
|
|
|
|
|
println!("Touching `externref` table...");
|
|
|
|
let table = instance.get_table(&mut store, "table").unwrap();
|
|
|
|
table.set(&mut store, 3, Some(externref.clone()).into())?;
|
|
|
|
let elem = table
|
|
|
|
.get(&mut store, 3)
|
|
|
|
.unwrap() // assert in bounds
|
Wasmtime: Finish support for the typed function references proposal (#7943)
* Wasmtime: Finish support for the typed function references proposal
While we supported the function references proposal inside Wasm, we didn't
support it on the "outside" in the Wasmtime embedder APIs. So much of the work
here is exposing typed function references, and their type system updates, in
the embedder API. These changes include:
* `ValType::FuncRef` and `ValType::ExternRef` are gone, replaced with the
introduction of the `RefType` and `HeapType` types and a
`ValType::Ref(RefType)` variant.
* `ValType` and `FuncType` no longer implement `Eq` and `PartialEq`. Instead
there are `ValType::matches` and `FuncType::matches` methods which check
directional subtyping. I also added `ValType::eq` and `FuncType::eq` static
methods for the rare case where someone needs to check precise equality, but
that is almost never actually the case, 99.99% of the time you want to check
subtyping.
* There are also public `Val::matches_ty` predicates for checking if a value is
an instance of a type, as well as internal helpers like
`Val::ensure_matches_ty` that return a formatted error if the value does not
match the given type. These helpers are used throughout Wasmtime internals
now.
* There is now a dedicated `wasmtime::Ref` type that represents reference
values. Table operations have been updated to take and return `Ref`s rather
than `Val`s.
Furthermore, this commit also includes type registry changes to correctly manage
lifetimes of types that reference other types. This wasn't previously an issue
because the only thing that could reference types that reference other types was
a Wasm module that added all the types that could reference each other at the
same time and removed them all at the same time. But now that the previously
discussed work to expose these things in the embedder API is done, type lifetime
management in the registry becomes a little trickier because the embedder might
grab a reference to a type that references another type, and then unload the
Wasm module that originally defined that type, but then the user should still be
able use that type and the other types it transtively references. Before, we
were refcounting individual registry entries. Now, we still are refcounting
individual entries, but now we are also accounting for type-to-type references
and adding a new type to the registry will increment the refcounts of each of
the types that it references, and removing a type from the registry will
decrement the refcounts of each of the types it references, and then recursively
(logically, not literally) remove any types whose refcount has now reached zero.
Additionally, this PR adds support for subtyping to `Func::typed`- and
`Func::wrap`-style APIs. For result types, you can always use a supertype of the
WebAssembly function's actual declared return type in `Func::typed`. And for
param types, you can always use a subtype of the Wasm function's actual declared
param type. Doing these things essentially erases information but is always
correct. But additionally, for functions which take a reference to a concrete
type as a parameter, you can also use the concrete type's supertype. Consider a
WebAssembly function that takes a reference to a function with a concrete type:
`(ref null <func type index>)`. In this scenario, there is no static
`wasmtime::Foo` Rust type that corresponds to that particular Wasm-defined
concrete reference type because Wasm modules are loaded dynamically at
runtime. You *could* do `f.typed::<Option<NoFunc>, ()>()`, and while that is
correctly typed and valid, it is often overly restrictive. The only value you
could call the resulting typed function with is the null function reference, but
we'd like to call it with non-null function references that happen to be of the
correct type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
case, even though `Option<Func>` represents `(ref null func)` which is the
supertype, not subtype, of `(ref null <func type index>)`. This does imply some
minimal dynamic type checks in this case, but it is supported for better
ergonomics, to enable passing non-null references into the function.
We can investigate whether it is possible to use generic type parameters and
combinators to define Rust types that precisely match concrete reference types
in future, follow-up pull requests. But for now, we've made things usable, at
least.
Finally, this also takes the first baby step towards adding support for the Wasm
GC proposal. Right now the only thing that is supported is `nofunc` references,
and this was mainly to make testing function reference subtyping easier. But
that does mean that supporting `nofunc` references entailed also adding a
`wasmtime::NoFunc` type as well as the `Config::wasm_gc(enabled)` knob. So we
officially have an in-progress implementation of Wasm GC in Wasmtime after this
PR lands!
Fixes https://github.com/bytecodealliance/wasmtime/issues/6455
* Fix WAT in test to be valid
* Check that dependent features are enabled for function-references and GC
* Remove unnecessary engine parameters from a few methods
Ever since `FuncType`'s internal `RegisteredType` holds onto its own `Engine`,
we don't need these anymore.
Still useful to keep the `Engine` parameter around for the `ensure_matches`
methods because that can be used to check correct store/engine usage for
embedders.
* Add missing dependent feature enabling for some tests
* Remove copy-paste bit from test
* match self to show it is uninhabited
* Add a missing `is_v128` method
* Short circuit a few func type comparisons
* Turn comment into part of doc comment
* Add test for `Global::new` and subtyping
* Add tests for embedder API, tables, and subtyping
* Add an embedder API test for setting globals and subtyping
* Construct realloc's type from its index, rather than from scratch
* Help LLVM better optimize our dynamic type checks in `TypedFunc::call_raw`
* Fix call benchmark compilation
* Change `WasmParams::into_abi` to take the whole func type instead of iter of params
* Fix doc links
prtest:full
* Fix size assertion on s390x
9 months ago
|
|
|
.unwrap_extern() // assert it's an externref table
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
.copied()
|
|
|
|
.unwrap(); // assert the externref isn't null
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
assert!(Rooted::ref_eq(&store, &elem, &externref)?);
|
|
|
|
|
|
|
|
println!("Touching `externref` global...");
|
|
|
|
let global = instance.get_global(&mut store, "global").unwrap();
|
|
|
|
global.set(&mut store, Some(externref.clone()).into())?;
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
let global_val = global.get(&mut store).unwrap_externref().copied().unwrap();
|
|
|
|
assert!(Rooted::ref_eq(&store, &global_val, &externref)?);
|
|
|
|
|
|
|
|
println!("Calling `externref` func...");
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
let func = instance.get_typed_func::<Option<Rooted<ExternRef>>, Option<Rooted<ExternRef>>>(
|
|
|
|
&mut store, "func",
|
|
|
|
)?;
|
|
|
|
let ret = func.call(&mut store, Some(externref))?;
|
|
|
|
assert!(ret.is_some());
|
Define garbage collection rooting APIs (#8011)
* Define garbage collection rooting APIs
Rooting prevents GC objects from being collected while they are actively being
used.
We have a few sometimes-conflicting goals with our GC rooting APIs:
1. Safety: It should never be possible to get a use-after-free bug because the
user misused the rooting APIs, the collector "mistakenly" determined an
object was unreachable and collected it, and then the user tried to access
the object. This is our highest priority.
2. Moving GC: Our rooting APIs should moving collectors (such as generational
and compacting collectors) where an object might get relocated after a
collection and we need to update the GC root's pointer to the moved
object. This means we either need cooperation and internal mutability from
individual GC roots as well as the ability to enumerate all GC roots on the
native Rust stack, or we need a level of indirection.
3. Performance: Our rooting APIs should generally be as low-overhead as
possible. They definitely shouldn't require synchronization and locking to
create, access, and drop GC roots.
4. Ergonomics: Our rooting APIs should be, if not a pleasure, then at least not
a burden for users. Additionally, the API's types should be `Sync` and `Send`
so that they work well with async Rust.
For example, goals (3) and (4) are in conflict when we think about how to
support (2). Ideally, for ergonomics, a root would automatically unroot itself
when dropped. But in the general case that requires holding a reference to the
store's root set, and that root set needs to be held simultaneously by all GC
roots, and they each need to mutate the set to unroot themselves. That implies
`Rc<RefCell<...>>` or `Arc<Mutex<...>>`! The former makes the store and GC root
types not `Send` and not `Sync`. The latter imposes synchronization and locking
overhead. So we instead make GC roots indirect and require passing in a store
context explicitly to unroot in the general case. This trades worse ergonomics
for better performance and support for moving GC and async Rust.
Okay, with that out of the way, this module provides two flavors of rooting
API. One for the common, scoped lifetime case, and another for the rare case
where we really need a GC root with an arbitrary, non-LIFO/non-scoped lifetime:
1. `RootScope` and `Rooted<T>`: These are used for temporarily rooting GC
objects for the duration of a scope. Upon exiting the scope, they are
automatically unrooted. The internal implementation takes advantage of the
LIFO property inherent in scopes, making creating and dropping `Rooted<T>`s
and `RootScope`s super fast and roughly equivalent to bump allocation.
This type is vaguely similar to V8's [`HandleScope`].
[`HandleScope`]: https://v8.github.io/api/head/classv8_1_1HandleScope.html
Note that `Rooted<T>` can't be statically tied to its context scope via a
lifetime parameter, unfortunately, as that would allow the creation and use
of only one `Rooted<T>` at a time, since the `Rooted<T>` would take a borrow
of the whole context.
This supports the common use case for rooting and provides good ergonomics.
2. `ManuallyRooted<T>`: This is the fully general rooting API used for holding
onto non-LIFO GC roots with arbitrary lifetimes. However, users must manually
unroot them. Failure to manually unroot a `ManuallyRooted<T>` before it is
dropped will result in the GC object (and everything it transitively
references) leaking for the duration of the `Store`'s lifetime.
This type is roughly similar to SpiderMonkey's [`PersistentRooted<T>`],
although they avoid the manual-unrooting with internal mutation and shared
references. (Our constraints mean we can't do those things, as mentioned
explained above.)
[`PersistentRooted<T>`]: http://devdoc.net/web/developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_reference/JS::PersistentRooted.html
At the end of the day, both `Rooted<T>` and `ManuallyRooted<T>` are just tagged
indices into the store's `RootSet`. This indirection allows working with Rust's
borrowing discipline (we use `&mut Store` to represent mutable access to the GC
heap) while still allowing rooted references to be moved around without tying up
the whole store in borrows. Additionally, and crucially, this indirection allows
us to update the *actual* GC pointers in the `RootSet` and support moving GCs
(again, as mentioned above).
* Reorganize GC-related submodules in `wasmtime-runtime`
* Reorganize GC-related submodules in `wasmtime`
* Use `Into<StoreContext[Mut]<'a, T>` for `Externref::data[_mut]` methods
* Run rooting tests under MIRI
* Make `into_abi` take an `AutoAssertNoGc`
* Don't use atomics to update externref ref counts anymore
* Try to make lifetimes/safety more-obviously correct
Remove some transmute methods, assert that `VMExternRef`s are the only valid
`VMGcRef`, etc.
* Update extenref constructor examples
* Make `GcRefImpl::transmute_ref` a non-default trait method
* Make inline fast paths for GC LIFO scopes
* Make `RootSet::unroot_gc_ref` an `unsafe` function
* Move Hash and Eq for Rooted, move to impl methods
* Remove type parameter from `AutoAssertNoGc`
Just wrap a `&mut StoreOpaque` directly.
* Make a bunch of internal `ExternRef` methods that deal with raw `VMGcRef`s take `AutoAssertNoGc` instead of `StoreOpaque`
* Fix compile after rebase
* rustfmt
* revert unrelated egraph changes
* Fix non-gc build
* Mark `AutoAssertNoGc` methods inline
* review feedback
* Temporarily remove externref support from the C API
Until we can add proper GC rooting.
* Remove doxygen reference to temp deleted function
* Remove need to `allow(private_interfaces)`
* Fix call benchmark compilation
8 months ago
|
|
|
assert!(Rooted::ref_eq(&store, &ret.unwrap(), &externref)?);
|
|
|
|
|
|
|
|
println!("GCing within the store...");
|
|
|
|
store.gc();
|
|
|
|
|
|
|
|
println!("Done.");
|
|
|
|
Ok(())
|
|
|
|
}
|