You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

706 lines
21 KiB

use anyhow::Result;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function's future is not ready we switch back to the main native stack to continue execution. There's a whole bunch of details in this commit, and it's a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We'll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we're trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we've also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok'able. This isn't super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future's execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64's playbook and don't have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber's start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don't reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it's probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
use wasmtime::*;
fn async_store() -> Store<()> {
Store::new(&Engine::new(Config::new().async_support(true)).unwrap(), ())
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
}
async fn run_smoke_test(store: &mut Store<()>, func: Func) {
func.call_async(&mut *store, &[], &mut []).await.unwrap();
func.call_async(&mut *store, &[], &mut []).await.unwrap();
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
}
async fn run_smoke_typed_test(store: &mut Store<()>, func: Func) {
let func = func.typed::<(), (), _>(&store).unwrap();
func.call_async(&mut *store, ()).await.unwrap();
func.call_async(&mut *store, ()).await.unwrap();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn smoke() {
let mut store = async_store();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
let func = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |_caller, _params, _results| Box::new(async { Ok(()) }),
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
);
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let func = Func::wrap0_async(&mut store, move |_caller| Box::new(async { Ok(()) }));
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
}
#[tokio::test]
async fn smoke_host_func() -> Result<()> {
let mut store = async_store();
let mut linker = Linker::new(store.engine());
linker.func_new_async(
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
"",
"first",
FuncType::new(None, None),
move |_caller, _params, _results| Box::new(async { Ok(()) }),
)?;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
linker.func_wrap0_async("", "second", move |_caller| Box::new(async { Ok(()) }))?;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let func = linker
Remove the module linking implementation in Wasmtime (#3958) * Remove the module linking implementation in Wasmtime This commit removes the experimental implementation of the module linking WebAssembly proposal from Wasmtime. The module linking is no longer intended for core WebAssembly but is instead incorporated into the component model now at this point. This means that very large parts of Wasmtime&#39;s implementation of module linking are no longer applicable and would change greatly with an implementation of the component model. The main purpose of this is to remove Wasmtime&#39;s reliance on the support for module-linking in `wasmparser` and tooling crates. With this reliance removed we can move over to the `component-model` branch of `wasmparser` and use the updated support for the component model. Additionally given the trajectory of the component model proposal the embedding API of Wasmtime will not look like what it looks like today for WebAssembly. For example the core wasm `Instance` will not change and instead a `Component` is likely to be added instead. Some more rationale for this is in #3941, but the basic idea is that I feel that it&#39;s not going to be viable to develop support for the component model on a non-`main` branch of Wasmtime. Additionaly I don&#39;t think it&#39;s viable, for the same reasons as `wasm-tools`, to support the old module linking proposal and the new component model at the same time. This commit takes a moment to not only delete the existing module linking implementation but some abstractions are also simplified. For example module serialization is a bit simpler that there&#39;s only one module. Additionally instantiation is much simpler since the only initializer we have to deal with are imports and nothing else. Closes #3941 * Fix doc link * Update comments
3 years ago
.get(&mut store, "", "first")
.unwrap()
.into_func()
.unwrap();
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
let func = linker
Remove the module linking implementation in Wasmtime (#3958) * Remove the module linking implementation in Wasmtime This commit removes the experimental implementation of the module linking WebAssembly proposal from Wasmtime. The module linking is no longer intended for core WebAssembly but is instead incorporated into the component model now at this point. This means that very large parts of Wasmtime&#39;s implementation of module linking are no longer applicable and would change greatly with an implementation of the component model. The main purpose of this is to remove Wasmtime&#39;s reliance on the support for module-linking in `wasmparser` and tooling crates. With this reliance removed we can move over to the `component-model` branch of `wasmparser` and use the updated support for the component model. Additionally given the trajectory of the component model proposal the embedding API of Wasmtime will not look like what it looks like today for WebAssembly. For example the core wasm `Instance` will not change and instead a `Component` is likely to be added instead. Some more rationale for this is in #3941, but the basic idea is that I feel that it&#39;s not going to be viable to develop support for the component model on a non-`main` branch of Wasmtime. Additionaly I don&#39;t think it&#39;s viable, for the same reasons as `wasm-tools`, to support the old module linking proposal and the new component model at the same time. This commit takes a moment to not only delete the existing module linking implementation but some abstractions are also simplified. For example module serialization is a bit simpler that there&#39;s only one module. Additionally instantiation is much simpler since the only initializer we have to deal with are imports and nothing else. Closes #3941 * Fix doc link * Update comments
3 years ago
.get(&mut store, "", "second")
.unwrap()
.into_func()
.unwrap();
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Ok(())
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn smoke_with_suspension() {
let mut store = async_store();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
let func = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |_caller, _params, _results| {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async {
tokio::task::yield_now().await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
);
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let func = Func::wrap0_async(&mut store, move |_caller| {
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Box::new(async {
tokio::task::yield_now().await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Ok(())
})
});
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn smoke_host_func_with_suspension() -> Result<()> {
let mut store = async_store();
let mut linker = Linker::new(store.engine());
linker.func_new_async(
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
"",
"first",
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
move |_caller, _params, _results| {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async {
tokio::task::yield_now().await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
)?;
linker.func_wrap0_async("", "second", move |_caller| {
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Box::new(async {
tokio::task::yield_now().await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Ok(())
})
})?;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let func = linker
Remove the module linking implementation in Wasmtime (#3958) * Remove the module linking implementation in Wasmtime This commit removes the experimental implementation of the module linking WebAssembly proposal from Wasmtime. The module linking is no longer intended for core WebAssembly but is instead incorporated into the component model now at this point. This means that very large parts of Wasmtime&#39;s implementation of module linking are no longer applicable and would change greatly with an implementation of the component model. The main purpose of this is to remove Wasmtime&#39;s reliance on the support for module-linking in `wasmparser` and tooling crates. With this reliance removed we can move over to the `component-model` branch of `wasmparser` and use the updated support for the component model. Additionally given the trajectory of the component model proposal the embedding API of Wasmtime will not look like what it looks like today for WebAssembly. For example the core wasm `Instance` will not change and instead a `Component` is likely to be added instead. Some more rationale for this is in #3941, but the basic idea is that I feel that it&#39;s not going to be viable to develop support for the component model on a non-`main` branch of Wasmtime. Additionaly I don&#39;t think it&#39;s viable, for the same reasons as `wasm-tools`, to support the old module linking proposal and the new component model at the same time. This commit takes a moment to not only delete the existing module linking implementation but some abstractions are also simplified. For example module serialization is a bit simpler that there&#39;s only one module. Additionally instantiation is much simpler since the only initializer we have to deal with are imports and nothing else. Closes #3941 * Fix doc link * Update comments
3 years ago
.get(&mut store, "", "first")
.unwrap()
.into_func()
.unwrap();
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let func = linker
Remove the module linking implementation in Wasmtime (#3958) * Remove the module linking implementation in Wasmtime This commit removes the experimental implementation of the module linking WebAssembly proposal from Wasmtime. The module linking is no longer intended for core WebAssembly but is instead incorporated into the component model now at this point. This means that very large parts of Wasmtime&#39;s implementation of module linking are no longer applicable and would change greatly with an implementation of the component model. The main purpose of this is to remove Wasmtime&#39;s reliance on the support for module-linking in `wasmparser` and tooling crates. With this reliance removed we can move over to the `component-model` branch of `wasmparser` and use the updated support for the component model. Additionally given the trajectory of the component model proposal the embedding API of Wasmtime will not look like what it looks like today for WebAssembly. For example the core wasm `Instance` will not change and instead a `Component` is likely to be added instead. Some more rationale for this is in #3941, but the basic idea is that I feel that it&#39;s not going to be viable to develop support for the component model on a non-`main` branch of Wasmtime. Additionaly I don&#39;t think it&#39;s viable, for the same reasons as `wasm-tools`, to support the old module linking proposal and the new component model at the same time. This commit takes a moment to not only delete the existing module linking implementation but some abstractions are also simplified. For example module serialization is a bit simpler that there&#39;s only one module. Additionally instantiation is much simpler since the only initializer we have to deal with are imports and nothing else. Closes #3941 * Fix doc link * Update comments
3 years ago
.get(&mut store, "", "second")
.unwrap()
.into_func()
.unwrap();
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Ok(())
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn recursive_call() {
let mut store = async_store();
let async_wasm_func = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
|_caller, _params, _results| {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async {
tokio::task::yield_now().await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// Create an imported function which recursively invokes another wasm
// function asynchronously, although this one is just our own host function
// which suffices for this test.
let func2 = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |mut caller, _params, _results| {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async move {
Optimize `Func::call` and its C API (#3319) * Optimize `Func::call` and its C API This commit is an alternative to #3298 which achieves effectively the same goal of optimizing the `Func::call` API as well as its C API sibling of `wasmtime_func_call`. The strategy taken here is different than #3298 though where a new API isn&#39;t created, rather a small tweak to an existing API is done. Specifically this commit handles the major sources of slowness with `Func::call` with: * Looking up the type of a function, to typecheck the arguments with and use to guide how the results should be loaded, no longer hits the rwlock in the `Engine` but instead each `Func` contains its own `FuncType`. This can be an unnecessary allocation for funcs not used with `Func::call`, so this is a downside of this implementation relative to #3298. A mitigating factor, though, is that instance exports are loaded lazily into the `Store` and in theory not too many funcs are active in the store as `Func` objects. * Temporary storage is amortized with a long-lived `Vec` in the `Store` rather than allocating a new vector on each call. This is basically the same strategy as #3294 only applied to different types in different places. Specifically `wasmtime::Store` now retains a `Vec&lt;u128&gt;` for `Func::call`, and the C API retains a `Vec&lt;Val&gt;` for calling `Func::call`. * Finally, an API breaking change is made to `Func::call` and its type signature (as well as `Func::call_async`). Instead of returning `Box&lt;[Val]&gt;` as it did before this function now takes a `results: &amp;mut [Val]` parameter. This allows the caller to manage the allocation and we can amortize-remove it in `wasmtime_func_call` by using space after the parameters in the `Vec&lt;Val&gt;` we&#39;re passing in. This change is naturally a breaking change and we&#39;ll want to consider it carefully, but mitigating factors are that most embeddings are likely using `TypedFunc::call` instead and this signature taking a mutable slice better aligns with `Func::new` which receives a mutable slice for the results. Overall this change, in the benchmark of &#34;call a nop function from the C API&#34; is not quite as good as #3298. It&#39;s still a bit slower, on the order of 15ns, because there&#39;s lots of capacity checks around vectors and the type checks are slightly less optimized than before. Overall though this is still significantly better than today because allocations and the rwlock to acquire the type information are both avoided. I personally feel that this change is the best to do because it has less of an API impact than #3298. * Rebase issues
3 years ago
async_wasm_func
.call_async(&mut caller, &[], &mut [])
.await?;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
);
// Create an instance which calls an async import twice.
let module = Module::new(
store.engine(),
"
(module
(import \"\" \"\" (func))
(func (export \"\")
;; call imported function which recursively does an async
;; call
call 0
;; do it again, and our various pointers all better align
call 0))
",
)
.unwrap();
let instance = Instance::new_async(&mut store, &module, &[func2.into()])
.await
.unwrap();
let func = instance.get_func(&mut store, "").unwrap();
func.call_async(&mut store, &[], &mut []).await.unwrap();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn suspend_while_suspending() {
let mut store = async_store();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// Create a synchronous function which calls our asynchronous function and
// runs it locally. This shouldn't generally happen but we know everything
// is synchronous in this test so it's fine for us to do this.
//
// The purpose of this test is intended to stress various cases in how
// we manage pointers in ways that are not necessarily common but are still
// possible in safe code.
let async_thunk = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
|_caller, _params, _results| Box::new(async { Ok(()) }),
);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
let sync_call_async_thunk = Func::new(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |mut caller, _params, _results| {
let mut future = Box::pin(async_thunk.call_async(&mut caller, &[], &mut []));
let poll = future
.as_mut()
.poll(&mut Context::from_waker(&noop_waker()));
assert!(poll.is_ready());
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
},
);
// A small async function that simply awaits once to pump the loops and
// then finishes.
let async_import = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |_caller, _params, _results| {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async move {
tokio::task::yield_now().await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
);
let module = Module::new(
store.engine(),
"
(module
(import \"\" \"\" (func $sync_call_async_thunk))
(import \"\" \"\" (func $async_import))
(func (export \"\")
;; Set some store-local state and pointers
call $sync_call_async_thunk
;; .. and hopefully it's all still configured correctly
call $async_import))
",
)
.unwrap();
let instance = Instance::new_async(
&mut store,
&module,
&[sync_call_async_thunk.into(), async_import.into()],
)
.await
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
.unwrap();
let func = instance.get_func(&mut store, "").unwrap();
func.call_async(&mut store, &[], &mut []).await.unwrap();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn cancel_during_run() {
let mut store = Store::new(&Engine::new(Config::new().async_support(true)).unwrap(), 0);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
let async_thunk = Func::new_async(
&mut store,
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
FuncType::new(None, None),
move |mut caller, _params, _results| {
assert_eq!(*caller.data(), 0);
*caller.data_mut() = 1;
let dtor = SetOnDrop(caller);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Box::new(async move {
drop(&dtor);
tokio::task::yield_now().await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
Ok(())
})
},
);
// Shouldn't have called anything yet...
assert_eq!(*store.data(), 0);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// Create our future, but as per async conventions this still doesn't
// actually do anything. No wasm or host function has been called yet.
let future = Box::pin(async_thunk.call_async(&mut store, &[], &mut []));
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// Push the future forward one tick, which actually runs the host code in
// our async func. Our future is designed to be pending once, however.
let future = PollOnce::new(future).await;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// Now that our future is running (on a separate, now-suspended fiber), drop
// the future and that should deallocate all the Rust bits as well.
drop(future);
assert_eq!(*store.data(), 2);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
struct SetOnDrop<'a>(Caller<'a, usize>);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
impl Drop for SetOnDrop<'_> {
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
fn drop(&mut self) {
assert_eq!(*self.0.data(), 1);
*self.0.data_mut() = 2;
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
}
}
#[tokio::test]
async fn iloop_with_fuel() {
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let engine = Engine::new(Config::new().async_support(true).consume_fuel(true)).unwrap();
let mut store = Store::new(&engine, ());
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
store.out_of_fuel_async_yield(1_000, 10);
let module = Module::new(
&engine,
"
(module
(func (loop br 0))
(start 0)
)
",
)
.unwrap();
let instance = Instance::new_async(&mut store, &module, &[]);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
// This should yield a bunch of times but eventually finish
let (_, pending) = CountPending::new(Box::pin(instance)).await;
assert!(pending > 100);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn fuel_eventually_finishes() {
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let engine = Engine::new(Config::new().async_support(true).consume_fuel(true)).unwrap();
let mut store = Store::new(&engine, ());
store.out_of_fuel_async_yield(u64::max_value(), 10);
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
let module = Module::new(
&engine,
"
(module
(func
(local i32)
i32.const 100
local.set 0
(loop
local.get 0
i32.const -1
i32.add
local.tee 0
br_if 0)
)
(start 0)
)
",
)
.unwrap();
let instance = Instance::new_async(&mut store, &module, &[]);
instance.await.unwrap();
Implement support for `async` functions in Wasmtime (#2434) * Implement support for `async` functions in Wasmtime This is an implementation of [RFC 2] in Wasmtime which is to support `async`-defined host functions. At a high level support is added by executing WebAssembly code that might invoke an asynchronous host function on a separate native stack. When the host function&#39;s future is not ready we switch back to the main native stack to continue execution. There&#39;s a whole bunch of details in this commit, and it&#39;s a bit much to go over them all here in this commit message. The most important changes here are: * A new `wasmtime-fiber` crate has been written to manage the low-level details of stack-switching. Unixes use `mmap` to allocate a stack and Windows uses the native fibers implementation. We&#39;ll surely want to refactor this to move stack allocation elsewhere in the future. Fibers are intended to be relatively general with a lot of type paremters to fling values back and forth across suspension points. The whole crate is a giant wad of `unsafe` unfortunately and involves handwritten assembly with custom dwarf CFI directives to boot. Definitely deserves a close eye in review! * The `Store` type has two new methods -- `block_on` and `on_fiber` which bridge between the async and non-async worlds. Lots of unsafe fiddly bits here as we&#39;re trying to communicate context pointers between disparate portions of the code. Extra eyes and care in review is greatly appreciated. * The APIs for binding `async` functions are unfortunately pretty ugly in `Func`. This is mostly due to language limitations and compiler bugs (I believe) in Rust. Instead of `Func::wrap` we have a `Func::wrapN_async` family of methods, and we&#39;ve also got a whole bunch of `Func::getN_async` methods now too. It may be worth rethinking the API of `Func` to try to make the documentation page actually grok&#39;able. This isn&#39;t super heavily tested but the various test should suffice for engaging hopefully nearly all the infrastructure in one form or another. This is just the start though! [RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2 * Add wasmtime-fiber to publish script * Save vector/float registers on ARM too. * Fix a typo * Update lock file * Implement periodically yielding with fuel consumption This commit implements APIs on `Store` to periodically yield execution of futures through the consumption of fuel. When fuel runs out a future&#39;s execution is yielded back to the caller, and then upon resumption fuel is re-injected. The goal of this is to allow cooperative multi-tasking with futures. * Fix compile without async * Save/restore the frame pointer in fiber switching Turns out this is another caller-saved register! * Simplify x86_64 fiber asm Take a leaf out of aarch64&#39;s playbook and don&#39;t have extra memory to load/store these arguments, instead leverage how `wasmtime_fiber_switch` already loads a bunch of data into registers which we can then immediately start using on a fiber&#39;s start without any extra memory accesses. * Add x86 support to wasmtime-fiber * Add ARM32 support to fiber crate * Make fiber build file probing more flexible * Use CreateFiberEx on Windows * Remove a stray no-longer-used trait declaration * Don&#39;t reach into `Caller` internals * Tweak async fuel to eventually run out. With fuel it&#39;s probably best to not provide any way to inject infinite fuel. * Fix some typos * Cleanup asm a bit * Use a shared header file to deduplicate some directives * Guarantee hidden visibility for functions * Enable gc-sections on macOS x86_64 * Add `.type` annotations for ARM * Update lock file * Fix compile error * Review comments
4 years ago
}
#[tokio::test]
async fn async_with_pooling_stacks() {
let mut config = Config::new();
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
config.async_support(true);
config.allocation_strategy(InstanceAllocationStrategy::Pooling {
strategy: PoolingAllocationStrategy::NextAvailable,
Remove the `ModuleLimits` pooling configuration structure (#3837) * Remove the `ModuleLimits` pooling configuration structure This commit is an attempt to improve the usability of the pooling allocator by removing the need to configure a `ModuleLimits` structure. Internally this structure has limits on all forms of wasm constructs but this largely bottoms out in the size of an allocation for an instance in the instance pooling allocator. Maintaining this list of limits can be cumbersome as modules may get tweaked over time and there&#39;s otherwise no real reason to limit the number of globals in a module since the main goal is to limit the memory consumption of a `VMContext` which can be done with a memory allocation limit rather than fine-tuned control over each maximum and minimum. The new approach taken in this commit is to remove `ModuleLimits`. Some fields, such as `tables`, `table_elements` , `memories`, and `memory_pages` are moved to `InstanceLimits` since they&#39;re still enforced at runtime. A new field `size` is added to `InstanceLimits` which indicates, in bytes, the maximum size of the `VMContext` allocation. If the size of a `VMContext` for a module exceeds this value then instantiation will fail. This involved adding a few more checks to `{Table, Memory}::new_static` to ensure that the minimum size is able to fit in the allocation, since previously modules were validated at compile time of the module that everything fit and that validation no longer happens (it happens at runtime). A consequence of this commit is that Wasmtime will have no built-in way to reject modules at compile time if they&#39;ll fail to be instantiated within a particular pooling allocator configuration. Instead a module must attempt instantiation see if a failure happens. * Fix benchmark compiles * Fix some doc links * Fix a panic by ensuring modules have limited tables/memories * Review comments * Add back validation at `Module` time instantiation is possible This allows for getting an early signal at compile time that a module will never be instantiable in an engine with matching settings. * Provide a better error message when sizes are exceeded Improve the error message when an instance size exceeds the maximum by providing a breakdown of where the bytes are all going and why the large size is being requested. * Try to fix test in qemu * Flag new test as 64-bit only Sizes are all specific to 64-bit right now
3 years ago
instance_limits: InstanceLimits {
count: 1,
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
memory_pages: 1,
table_elements: 0,
..Default::default()
},
});
Add guard pages to the front of linear memories (#2977) * Add guard pages to the front of linear memories This commit implements a safety feature for Wasmtime to place guard pages before the allocation of all linear memories. Guard pages placed after linear memories are typically present for performance (at least) because it can help elide bounds checks. Guard pages before a linear memory, however, are never strictly needed for performance or features. The intention of a preceding guard page is to help insulate against bugs in Cranelift or other code generators, such as CVE-2021-32629. This commit adds a `Config::guard_before_linear_memory` configuration option, defaulting to `true`, which indicates whether guard pages should be present both before linear memories as well as afterwards. Guard regions continue to be controlled by `{static,dynamic}_memory_guard_size` methods. The implementation here affects both on-demand allocated memories as well as the pooling allocator for memories. For on-demand memories this adjusts the size of the allocation as well as adjusts the calculations for the base pointer of the wasm memory. For the pooling allocator this will place a singular extra guard region at the very start of the allocation for memories. Since linear memories in the pooling allocator are contiguous every memory already had a preceding guard region in memory, it was just the previous memory&#39;s guard region afterwards. Only the first memory needed this extra guard. I&#39;ve attempted to write some tests to help test all this, but this is all somewhat tricky to test because the settings are pretty far away from the actual behavior. I think, though, that the tests added here should help cover various use cases and help us have confidence in tweaking the various `Config` settings beyond their defaults. Note that this also contains a semantic change where `InstanceLimits::memory_reservation_size` has been removed. Instead this field is now inferred from the `static_memory_maximum_size` and guard size settings. This should hopefully remove some duplication in these settings, canonicalizing on the guard-size/static-size settings as the way to control memory sizes and virtual reservations. * Update config docs * Fix a typo * Fix benchmark * Fix wasmtime-runtime tests * Fix some more tests * Try to fix uffd failing test * Review items * Tweak 32-bit defaults Makes the pooling allocator a bit more reasonable by default on 32-bit with these settings.
3 years ago
config.dynamic_memory_guard_size(0);
config.static_memory_guard_size(0);
config.static_memory_maximum_size(65536);
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let engine = Engine::new(&config).unwrap();
let mut store = Store::new(&engine, ());
let func = Func::new_async(
&mut store,
FuncType::new(None, None),
move |_caller, _params, _results| Box::new(async { Ok(()) }),
);
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
}
#[tokio::test]
async fn async_host_func_with_pooling_stacks() -> Result<()> {
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let mut config = Config::new();
config.async_support(true);
config.allocation_strategy(InstanceAllocationStrategy::Pooling {
strategy: PoolingAllocationStrategy::NextAvailable,
Remove the `ModuleLimits` pooling configuration structure (#3837) * Remove the `ModuleLimits` pooling configuration structure This commit is an attempt to improve the usability of the pooling allocator by removing the need to configure a `ModuleLimits` structure. Internally this structure has limits on all forms of wasm constructs but this largely bottoms out in the size of an allocation for an instance in the instance pooling allocator. Maintaining this list of limits can be cumbersome as modules may get tweaked over time and there&#39;s otherwise no real reason to limit the number of globals in a module since the main goal is to limit the memory consumption of a `VMContext` which can be done with a memory allocation limit rather than fine-tuned control over each maximum and minimum. The new approach taken in this commit is to remove `ModuleLimits`. Some fields, such as `tables`, `table_elements` , `memories`, and `memory_pages` are moved to `InstanceLimits` since they&#39;re still enforced at runtime. A new field `size` is added to `InstanceLimits` which indicates, in bytes, the maximum size of the `VMContext` allocation. If the size of a `VMContext` for a module exceeds this value then instantiation will fail. This involved adding a few more checks to `{Table, Memory}::new_static` to ensure that the minimum size is able to fit in the allocation, since previously modules were validated at compile time of the module that everything fit and that validation no longer happens (it happens at runtime). A consequence of this commit is that Wasmtime will have no built-in way to reject modules at compile time if they&#39;ll fail to be instantiated within a particular pooling allocator configuration. Instead a module must attempt instantiation see if a failure happens. * Fix benchmark compiles * Fix some doc links * Fix a panic by ensuring modules have limited tables/memories * Review comments * Add back validation at `Module` time instantiation is possible This allows for getting an early signal at compile time that a module will never be instantiable in an engine with matching settings. * Provide a better error message when sizes are exceeded Improve the error message when an instance size exceeds the maximum by providing a breakdown of where the bytes are all going and why the large size is being requested. * Try to fix test in qemu * Flag new test as 64-bit only Sizes are all specific to 64-bit right now
3 years ago
instance_limits: InstanceLimits {
count: 1,
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
memory_pages: 1,
table_elements: 0,
..Default::default()
},
});
Add guard pages to the front of linear memories (#2977) * Add guard pages to the front of linear memories This commit implements a safety feature for Wasmtime to place guard pages before the allocation of all linear memories. Guard pages placed after linear memories are typically present for performance (at least) because it can help elide bounds checks. Guard pages before a linear memory, however, are never strictly needed for performance or features. The intention of a preceding guard page is to help insulate against bugs in Cranelift or other code generators, such as CVE-2021-32629. This commit adds a `Config::guard_before_linear_memory` configuration option, defaulting to `true`, which indicates whether guard pages should be present both before linear memories as well as afterwards. Guard regions continue to be controlled by `{static,dynamic}_memory_guard_size` methods. The implementation here affects both on-demand allocated memories as well as the pooling allocator for memories. For on-demand memories this adjusts the size of the allocation as well as adjusts the calculations for the base pointer of the wasm memory. For the pooling allocator this will place a singular extra guard region at the very start of the allocation for memories. Since linear memories in the pooling allocator are contiguous every memory already had a preceding guard region in memory, it was just the previous memory&#39;s guard region afterwards. Only the first memory needed this extra guard. I&#39;ve attempted to write some tests to help test all this, but this is all somewhat tricky to test because the settings are pretty far away from the actual behavior. I think, though, that the tests added here should help cover various use cases and help us have confidence in tweaking the various `Config` settings beyond their defaults. Note that this also contains a semantic change where `InstanceLimits::memory_reservation_size` has been removed. Instead this field is now inferred from the `static_memory_maximum_size` and guard size settings. This should hopefully remove some duplication in these settings, canonicalizing on the guard-size/static-size settings as the way to control memory sizes and virtual reservations. * Update config docs * Fix a typo * Fix benchmark * Fix wasmtime-runtime tests * Fix some more tests * Try to fix uffd failing test * Review items * Tweak 32-bit defaults Makes the pooling allocator a bit more reasonable by default on 32-bit with these settings.
3 years ago
config.dynamic_memory_guard_size(0);
config.static_memory_guard_size(0);
config.static_memory_maximum_size(65536);
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
let mut store = Store::new(&Engine::new(&config)?, ());
let mut linker = Linker::new(store.engine());
linker.func_new_async(
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
"",
"",
FuncType::new(None, None),
move |_caller, _params, _results| Box::new(async { Ok(()) }),
)?;
Implement shared host functions. (#2625) * Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime&#39;s `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config &#34;async&#34; rather than store. This commit moves the concept of &#34;async-ness&#34; to `Config` rather than `Store`. Note: this is a breaking API change for anyone that&#39;s already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an &#34;async&#34; config and any `Store` associated with that config is inherently &#34;async&#34;. This is needed for async shared host functions to have some sanity check during their execution (async host functions, like &#34;async&#34; `Func`, need to be called with the &#34;async&#34; variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the &#34;wrap async&#34; method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the &#34;default&#34; instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating &#34;async support&#34; as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required.
4 years ago
Remove the module linking implementation in Wasmtime (#3958) * Remove the module linking implementation in Wasmtime This commit removes the experimental implementation of the module linking WebAssembly proposal from Wasmtime. The module linking is no longer intended for core WebAssembly but is instead incorporated into the component model now at this point. This means that very large parts of Wasmtime&#39;s implementation of module linking are no longer applicable and would change greatly with an implementation of the component model. The main purpose of this is to remove Wasmtime&#39;s reliance on the support for module-linking in `wasmparser` and tooling crates. With this reliance removed we can move over to the `component-model` branch of `wasmparser` and use the updated support for the component model. Additionally given the trajectory of the component model proposal the embedding API of Wasmtime will not look like what it looks like today for WebAssembly. For example the core wasm `Instance` will not change and instead a `Component` is likely to be added instead. Some more rationale for this is in #3941, but the basic idea is that I feel that it&#39;s not going to be viable to develop support for the component model on a non-`main` branch of Wasmtime. Additionaly I don&#39;t think it&#39;s viable, for the same reasons as `wasm-tools`, to support the old module linking proposal and the new component model at the same time. This commit takes a moment to not only delete the existing module linking implementation but some abstractions are also simplified. For example module serialization is a bit simpler that there&#39;s only one module. Additionally instantiation is much simpler since the only initializer we have to deal with are imports and nothing else. Closes #3941 * Fix doc link * Update comments
3 years ago
let func = linker.get(&mut store, "", "").unwrap().into_func().unwrap();
run_smoke_test(&mut store, func).await;
run_smoke_typed_test(&mut store, func).await;
Ok(())
}
async fn execute_across_threads<F: Future + Send + 'static>(future: F) {
let future = PollOnce::new(Box::pin(future)).await;
tokio::task::spawn_blocking(move || future)
.await
.expect("shouldn't panic");
}
#[tokio::test]
async fn resume_separate_thread() {
// This test will poll the following future on two threads. Simulating a
// trap requires accessing TLS info, so that should be preserved correctly.
execute_across_threads(async {
let mut store = async_store();
let module = Module::new(
store.engine(),
"
(module
(import \"\" \"\" (func))
(start 0)
)
",
)
.unwrap();
let func = Func::wrap0_async(&mut store, |_| {
Box::new(async {
tokio::task::yield_now().await;
Err::<(), _>(wasmtime::Trap::new("test"))
})
});
let result = Instance::new_async(&mut store, &module, &[func.into()]).await;
assert!(result.is_err());
})
.await;
}
#[tokio::test]
async fn resume_separate_thread2() {
// This test will poll the following future on two threads. Catching a
// signal requires looking up TLS information to determine whether it's a
// trap to handle or not, so that must be preserved correctly across threads.
execute_across_threads(async {
let mut store = async_store();
let module = Module::new(
store.engine(),
"
(module
(import \"\" \"\" (func))
(func $start
call 0
unreachable)
(start $start)
)
",
)
.unwrap();
let func = Func::wrap0_async(&mut store, |_| {
Box::new(async {
tokio::task::yield_now().await;
})
});
let result = Instance::new_async(&mut store, &module, &[func.into()]).await;
assert!(result.is_err());
})
.await;
}
#[tokio::test]
async fn resume_separate_thread3() {
// This test doesn't actually do anything with cross-thread polls, but
// instead it deals with scheduling futures at "odd" times.
//
// First we'll set up a *synchronous* call which will initialize TLS info.
// This call is simply to a host-defined function, but it still has the same
// "enter into wasm" semantics since it's just calling a trampoline. In this
// situation we'll set up the TLS info so it's in place while the body of
// the function executes...
let mut store = Store::new(&Engine::default(), None);
let f = Func::wrap(&mut store, move |mut caller: Caller<'_, _>| {
// ... and the execution of this host-defined function (while the TLS
// info is initialized), will set up a recursive call into wasm. This
// recursive call will be done asynchronously so we can suspend it
// halfway through.
let f = async {
let mut store = async_store();
let module = Module::new(
store.engine(),
"
(module
(import \"\" \"\" (func))
(start 0)
)
",
)
.unwrap();
let func = Func::wrap0_async(&mut store, |_| {
Box::new(async {
tokio::task::yield_now().await;
})
});
drop(Instance::new_async(&mut store, &module, &[func.into()]).await);
unreachable!()
};
let mut future = Box::pin(f);
let poll = future
.as_mut()
.poll(&mut Context::from_waker(&noop_waker()));
assert!(poll.is_pending());
// ... so at this point our call into wasm is suspended. The call into
// wasm will have overwritten TLS info, and we sure hope that the
// information is restored at this point. Note that we squirrel away the
// future somewhere else to get dropped later. If we were to drop it
// here then we would reenter the future's suspended stack to clean it
// up, which would do more alterations of TLS information we're not
// testing here.
*caller.data_mut() = Some(future);
// ... all in all this function will need access to the original TLS
// information to raise the trap. This TLS information should be
// restored even though the asynchronous execution is suspended.
Err::<(), _>(wasmtime::Trap::new(""))
});
Optimize `Func::call` and its C API (#3319) * Optimize `Func::call` and its C API This commit is an alternative to #3298 which achieves effectively the same goal of optimizing the `Func::call` API as well as its C API sibling of `wasmtime_func_call`. The strategy taken here is different than #3298 though where a new API isn&#39;t created, rather a small tweak to an existing API is done. Specifically this commit handles the major sources of slowness with `Func::call` with: * Looking up the type of a function, to typecheck the arguments with and use to guide how the results should be loaded, no longer hits the rwlock in the `Engine` but instead each `Func` contains its own `FuncType`. This can be an unnecessary allocation for funcs not used with `Func::call`, so this is a downside of this implementation relative to #3298. A mitigating factor, though, is that instance exports are loaded lazily into the `Store` and in theory not too many funcs are active in the store as `Func` objects. * Temporary storage is amortized with a long-lived `Vec` in the `Store` rather than allocating a new vector on each call. This is basically the same strategy as #3294 only applied to different types in different places. Specifically `wasmtime::Store` now retains a `Vec&lt;u128&gt;` for `Func::call`, and the C API retains a `Vec&lt;Val&gt;` for calling `Func::call`. * Finally, an API breaking change is made to `Func::call` and its type signature (as well as `Func::call_async`). Instead of returning `Box&lt;[Val]&gt;` as it did before this function now takes a `results: &amp;mut [Val]` parameter. This allows the caller to manage the allocation and we can amortize-remove it in `wasmtime_func_call` by using space after the parameters in the `Vec&lt;Val&gt;` we&#39;re passing in. This change is naturally a breaking change and we&#39;ll want to consider it carefully, but mitigating factors are that most embeddings are likely using `TypedFunc::call` instead and this signature taking a mutable slice better aligns with `Func::new` which receives a mutable slice for the results. Overall this change, in the benchmark of &#34;call a nop function from the C API&#34; is not quite as good as #3298. It&#39;s still a bit slower, on the order of 15ns, because there&#39;s lots of capacity checks around vectors and the type checks are slightly less optimized than before. Overall though this is still significantly better than today because allocations and the rwlock to acquire the type information are both avoided. I personally feel that this change is the best to do because it has less of an API impact than #3298. * Rebase issues
3 years ago
assert!(f.call(&mut store, &[], &mut []).is_err());
}
#[tokio::test]
async fn recursive_async() -> Result<()> {
let mut store = async_store();
let m = Module::new(
store.engine(),
"(module
(func (export \"overflow\") call 0)
(func (export \"normal\"))
)",
)?;
let i = Instance::new_async(&mut store, &m, &[]).await?;
let overflow = i.get_typed_func::<(), (), _>(&mut store, "overflow")?;
let normal = i.get_typed_func::<(), (), _>(&mut store, "normal")?;
let f2 = Func::wrap0_async(&mut store, move |mut caller| {
Box::new(async move {
// recursive async calls shouldn't immediately stack overflow...
normal.call_async(&mut caller, ()).await?;
// ... but calls that actually stack overflow should indeed stack
// overflow
let err = overflow.call_async(&mut caller, ()).await.unwrap_err();
assert_eq!(err.trap_code(), Some(TrapCode::StackOverflow));
Ok(())
})
});
f2.call_async(&mut store, &[], &mut []).await?;
Ok(())
}
#[tokio::test]
async fn linker_module_command() -> Result<()> {
let mut store = async_store();
let mut linker = Linker::new(store.engine());
let module1 = Module::new(
store.engine(),
r#"
(module
(global $g (mut i32) (i32.const 0))
(func (export "_start"))
(func (export "g") (result i32)
global.get $g
i32.const 1
global.set $g)
)
"#,
)?;
let module2 = Module::new(
store.engine(),
r#"
(module
(import "" "g" (func (result i32)))
(func (export "get") (result i32)
call 0)
)
"#,
)?;
linker.module_async(&mut store, "", &module1).await?;
let instance = linker.instantiate_async(&mut store, &module2).await?;
let f = instance.get_typed_func::<(), i32, _>(&mut store, "get")?;
assert_eq!(f.call_async(&mut store, ()).await?, 0);
assert_eq!(f.call_async(&mut store, ()).await?, 0);
Ok(())
}
#[tokio::test]
async fn linker_module_reactor() -> Result<()> {
let mut store = async_store();
let mut linker = Linker::new(store.engine());
let module1 = Module::new(
store.engine(),
r#"
(module
(global $g (mut i32) (i32.const 0))
(func (export "g") (result i32)
global.get $g
i32.const 1
global.set $g)
)
"#,
)?;
let module2 = Module::new(
store.engine(),
r#"
(module
(import "" "g" (func (result i32)))
(func (export "get") (result i32)
call 0)
)
"#,
)?;
linker.module_async(&mut store, "", &module1).await?;
let instance = linker.instantiate_async(&mut store, &module2).await?;
let f = instance.get_typed_func::<(), i32, _>(&mut store, "get")?;
assert_eq!(f.call_async(&mut store, ()).await?, 0);
assert_eq!(f.call_async(&mut store, ()).await?, 1);
Ok(())
}
pub struct CountPending<F> {
future: F,
yields: usize,
}
impl<F> CountPending<F> {
pub fn new(future: F) -> CountPending<F> {
CountPending { future, yields: 0 }
}
}
impl<F> Future for CountPending<F>
where
F: Future + Unpin,
{
type Output = (F::Output, usize);
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match Pin::new(&mut self.future).poll(cx) {
Poll::Pending => {
self.yields += 1;
Poll::Pending
}
Poll::Ready(e) => Poll::Ready((e, self.yields)),
}
}
}
pub struct PollOnce<F>(Option<F>);
impl<F> PollOnce<F> {
pub fn new(future: F) -> PollOnce<F> {
PollOnce(Some(future))
}
}
impl<F> Future for PollOnce<F>
where
F: Future + Unpin,
{
type Output = F;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<F> {
let mut future = self.0.take().unwrap();
match Pin::new(&mut future).poll(cx) {
Poll::Pending => Poll::Ready(future),
Poll::Ready(_) => panic!("should not be ready"),
}
}
}
fn noop_waker() -> Waker {
const VTABLE: RawWakerVTable =
RawWakerVTable::new(|ptr| RawWaker::new(ptr, &VTABLE), |_| {}, |_| {}, |_| {});
const RAW: RawWaker = RawWaker::new(0 as *const (), &VTABLE);
unsafe { Waker::from_raw(RAW) }
}