You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123 lines
3.4 KiB

[package]
name = "wasmtime-cli"
version = "0.27.0"
authors = ["The Wasmtime Project Developers"]
description = "Command-line interface for Wasmtime"
license = "Apache-2.0 WITH LLVM-exception"
documentation = "https://bytecodealliance.github.io/wasmtime/cli.html"
categories = ["wasm"]
keywords = ["webassembly", "wasm"]
repository = "https://github.com/bytecodealliance/wasmtime"
readme = "README.md"
edition = "2018"
default-run = "wasmtime"
[lib]
doctest = false
[[bin]]
name = "wasmtime"
path = "src/bin/wasmtime.rs"
doc = false
[dependencies]
# Enable all supported architectures by default.
wasmtime = { path = "crates/wasmtime", version = "0.27.0", default-features = false, features = ['cache'] }
wasmtime-cache = { path = "crates/cache", version = "0.27.0" }
wasmtime-debug = { path = "crates/debug", version = "0.27.0" }
wasmtime-environ = { path = "crates/environ", version = "0.27.0" }
wasmtime-jit = { path = "crates/jit", version = "0.27.0" }
wasmtime-obj = { path = "crates/obj", version = "0.27.0" }
wasmtime-wast = { path = "crates/wast", version = "0.27.0" }
wasmtime-wasi = { path = "crates/wasi", version = "0.27.0" }
wasmtime-wasi-crypto = { path = "crates/wasi-crypto", version = "0.27.0", optional = true }
wasmtime-wasi-nn = { path = "crates/wasi-nn", version = "0.27.0", optional = true }
Use structopt instead of docopt. This commit refactors the Wasmtime CLI tools to use `structopt` instead of `docopt`. The `wasmtime` tool now has the following subcommands: * `config new` - creates a new Wasmtime configuration file. * `run` - runs a WebAssembly module. * `wasm2obj` - translates a Wasm module to native object file. * `wast` - runs a test script file. If no subcommand is specified, the `run` subcommand is used. Thus, `wasmtime foo.wasm` should continue to function as expected. The `wasm2obj` and `wast` tools still exist, but delegate to the same implementation as the `wasmtime` subcommands. The standalone `wasm2obj` and `wast` tools may be removed in the future in favor of simply using `wasmtime`. Included in this commit is a breaking change to the default Wasmtime configuration file: it has been renamed from `wasmtime-cache-config.toml` to simply `config.toml`. The new name is less specific which will allow for additional (non-cache-related) settings in the future. There are some breaking changes to improve command line UX: * The `--cache-config` option has been renamed to `--config`. * The `--create-config-file` option has moved to the `config new` subcommand. As a result, the `wasm2obj` and `wast` tools cannot be used to create a new config file. * The short form of the `--optimize` option has changed from `-o` to `-O` for consistency. * The `wasm2obj` command takes the output object file as a required positional argument rather than the former required output *option* (e.g. `wasmtime wasm2obj foo.wasm foo.obj`).
5 years ago
structopt = { version = "0.3.5", features = ["color", "suggestions"] }
object = { version = "0.25.0", default-features = false, features = ["write"] }
Migrate from failure to thiserror and anyhow (#436) * Migrate from failure to thiserror and anyhow The failure crate invents its own traits that don't use std::error::Error (because failure predates certain features added to Error); this prevents using ? on an error from failure in a function using Error. The thiserror and anyhow crates integrate with the standard Error trait instead. This change does not attempt to semantically change or refactor the approach to error-handling in any portion of the code, to ensure that the change remains straightforward to review. Modules using specific differentiated error types move from failure_derive and derive(Fail) to thiserror and derive(Error). Modules boxing all errors opaquely move from failure::Error to anyhow. Modules using String as an error type continue to do so. Code using unwrap or expect continues to do so. Drop Display implementations when thiserror can easily derive an identical instance. Drop manual traversal of iter_causes; anyhow's Debug instance prints the chain of causes by default. Use anyhow's type alias anyhow::Result<T> in place of std::result::Result<T, anyhow::Error> whenever possible. * wasm2obj: Simplify error handling using existing messages handle_module in wasm2obj manually maps cranelift_codegen::isa::LookupError values to strings, but LookupError values already have strings that say almost exactly the same thing. Rely on the strings from cranelift. * wasmtime: Rely on question-mark-in-main The main() wrapper around rmain() completely matches the behavior of question-mark-in-main (print error to stderr and return 1), so switch to question-mark-in-main. * Update to walrus 0.13 and wasm-webidl-bindings 0.6 Both crates switched from failure to anyhow; updating lets us avoid a translation from failure to anyhow within wasmtime-interface-types.
5 years ago
anyhow = "1.0.19"
target-lexicon = { version = "0.12.0", default-features = false }
pretty_env_logger = "0.4.0"
file-per-thread-logger = "0.1.1"
wat = "1.0.37"
libc = "0.2.60"
externref: implement stack map-based garbage collection For host VM code, we use plain reference counting, where cloning increments the reference count, and dropping decrements it. We can avoid many of the on-stack increment/decrement operations that typically plague the performance of reference counting via Rust's ownership and borrowing system. Moving a `VMExternRef` avoids mutating its reference count, and borrowing it either avoids the reference count increment or delays it until if/when the `VMExternRef` is cloned. When passing a `VMExternRef` into compiled Wasm code, we don't want to do reference count mutations for every compiled `local.{get,set}`, nor for every function call. Therefore, we use a variation of **deferred reference counting**, where we only mutate reference counts when storing `VMExternRef`s somewhere that outlives the activation: into a global or table. Simultaneously, we over-approximate the set of `VMExternRef`s that are inside Wasm function activations. Periodically, we walk the stack at GC safe points, and use stack map information to precisely identify the set of `VMExternRef`s inside Wasm activations. Then we take the difference between this precise set and our over-approximation, and decrement the reference count for each of the `VMExternRef`s that are in our over-approximation but not in the precise set. Finally, the over-approximation is replaced with the precise set. The `VMExternRefActivationsTable` implements the over-approximized set of `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and passing it a `VMExternRef` moves the `VMExternRef` into the table, and the compiled Wasm function logically "borrows" the `VMExternRef` from the table. Similarly, `global.get` and `table.get` operations clone the gotten `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the reference out of the table. When a `VMExternRef` is returned to host code from a Wasm function, the host increments the reference count (because the reference is logically "borrowed" from the `VMExternRefActivationsTable` and the reference count from the table will be dropped at the next GC). For more general information on deferred reference counting, see *An Examination of Deferred Reference Counting and Cycle Detection* by Quinane: https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf cc #929 Fixes #1804
4 years ago
log = "0.4.8"
rayon = "1.5.0"
humantime = "2.0.0"
wasmparser = "0.78.1"
lazy_static = "1.4.0"
[dev-dependencies]
env_logger = "0.8.1"
filecheck = "0.5.0"
more-asserts = "0.2.1"
tempfile = "3.1.0"
test-programs = { path = "crates/test-programs" }
wasmtime-fuzzing = { path = "crates/fuzzing" }
wasmtime-runtime = { path = "crates/runtime" }
tokio = { version = "1.5.0", features = ["rt", "time", "macros", "rt-multi-thread"] }
tracing-subscriber = "0.2.16"
wast = "35.0.0"
criterion = "0.3.4"
num_cpus = "1.13.0"
[build-dependencies]
anyhow = "1.0.19"
[profile.release.build-override]
opt-level = 0
[workspace]
resolver = '2'
members = [
"cranelift",
"crates/bench-api",
"crates/c-api",
"crates/fuzzing",
"crates/misc/run-examples",
"crates/wiggle",
"crates/wiggle/generate",
"crates/wiggle/macro",
"crates/wasi-common",
"crates/wasi-common/cap-std-sync",
"crates/wasi-common/tokio",
"examples/fib-debug/wasm",
"examples/wasi/wasm",
"examples/tokio/wasm",
"fuzz",
]
[features]
wasi-nn: turn it on by default (#2859) * wasi-nn: turn it on by default This change makes the wasi-nn Cargo feature a default feature. Previously, a wasi-nn user would have to build a separate Wasmtime binary (e.g. `cargo build --features wasi-nn ...`) to use wasi-nn and the resulting binary would require OpenVINO shared libraries to be present in the environment in order to run (otherwise it would fail immediately with linking errors). With recent changes to the `openvino` crate, the wasi-nn implementation can defer the loading of the OpenVINO shared libraries until runtime (i.e., when the user Wasm program calls `wasi_ephemeral_nn::load`) and display a user-level error if anything goes wrong (e.g., the OpenVINO libraries are not present on the system). This runtime-linking addition allows the wasi-nn feature to be turned on by default and shipped with upcoming releases of Wasmtime. This change should be transparent for users who do not use wasi-nn: the `openvino` crate is small and the newly-available wasi-nn imports only affect programs in which they are used. For those interested in reviewing the runtime linking approach added to the `openvino` crate, see https://github.com/intel/openvino-rs/pull/19. * wasi-nn spec path: don't use canonicalize * Allow dependencies using the ISC license The ISC license should be [just as permissive](https://choosealicense.com/licenses/isc) as MIT, e.g., with no additional limitations. * Add a `--wasi-modules` flag This flag controls which WASI modules are made available to the Wasm program. This initial commit enables `wasi-common` by default (equivalent to `--wasi-modules=all`) and allows `wasi-nn` and `wasi-crypto` to be added in either individually (e.g., `--wasi-modules=wasi-nn`) or as a group (e.g., `--wasi-modules=all-experimental`). * wasi-crypto: fix unused dependency Co-authored-by: Pat Hickey <pat@moreproductive.org>
4 years ago
default = ["jitdump", "wasmtime/wat", "wasmtime/parallel-compilation", "wasi-nn"]
lightbeam = ["wasmtime/lightbeam"]
jitdump = ["wasmtime/jitdump"]
vtune = ["wasmtime/vtune"]
wasi-crypto = ["wasmtime-wasi-crypto"]
wasi-nn = ["wasmtime-wasi-nn"]
uffd = ["wasmtime/uffd"]
all-arch = ["wasmtime/all-arch"]
# Stub feature that does nothing, for Cargo-features compatibility: the new
# backend is the default now.
experimental_x64 = []
# Use the old x86 backend.
Fully support multiple returns in Wasmtime (#2806) * Fully support multiple returns in Wasmtime For quite some time now Wasmtime has "supported" multiple return values, but only in the mose bare bones ways. Up until recently you couldn't get a typed version of functions with multiple return values, and never have you been able to use `Func::wrap` with functions that return multiple values. Even recently where `Func::typed` can call functions that return multiple values it uses a double-indirection by calling a trampoline which calls the real function. The underlying reason for this lack of support is that cranelift's ABI for returning multiple values is not possible to write in Rust. For example if a wasm function returns two `i32` values there is no Rust (or C!) function you can write to correspond to that. This commit, however fixes that. This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and `WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for everything *except* how multiple values are returned. For multiple return values we simply define our own version of the ABI which Wasmtime implements, which is that for N return values the first is returned as if the function only returned that and the latter N-1 return values are returned via an out-ptr that's the last parameter to the function. These custom ABIs provides the ability for Wasmtime to bind these in Rust meaning that `Func::wrap` can now wrap functions that return multiple values and `Func::typed` no longer uses trampolines when calling functions that return multiple values. Although there's lots of internal changes there's no actual changes in the API surface area of Wasmtime, just a few more impls of more public traits which means that more types are supported in more places! Another change made with this PR is a consolidation of how the ABI of each function in a wasm module is selected. The native `SystemV` ABI, for example, is more efficient at returning multiple values than the wasmtime version of the ABI (since more things are in more registers). To continue to take advantage of this Wasmtime will now classify some functions in a wasm module with the "fast" ABI. Only functions that are not reachable externally from the module are classified with the fast ABI (e.g. those not exported, used in tables, or used with `ref.func`). This should enable purely internal functions of modules to have a faster calling convention than those which might be exposed to Wasmtime itself. Closes #1178 * Tweak some names and add docs * "fix" lightbeam compile * Fix TODO with dummy environ * Unwind info is a property of the target, not the ABI * Remove lightbeam unused imports * Attempt to fix arm64 * Document new ABIs aren't stable * Fix filetests to use the right target * Don't always do 64-bit stores with cranelift This was overwriting upper bits when 32-bit registers were being stored into return values, so fix the code inline to do a sized store instead of one-size-fits-all store. * At least get tests passing on the old backend * Fix a typo * Add some filetests with mixed abi calls * Get `multi` example working * Fix doctests on old x86 backend * Add a mixture of wasmtime/system_v tests
4 years ago
old-x86-backend = ["wasmtime/old-x86-backend"]
[badges]
maintenance = { status = "actively-developed" }
[[test]]
name = "host_segfault"
harness = false
externref: implement stack map-based garbage collection For host VM code, we use plain reference counting, where cloning increments the reference count, and dropping decrements it. We can avoid many of the on-stack increment/decrement operations that typically plague the performance of reference counting via Rust's ownership and borrowing system. Moving a `VMExternRef` avoids mutating its reference count, and borrowing it either avoids the reference count increment or delays it until if/when the `VMExternRef` is cloned. When passing a `VMExternRef` into compiled Wasm code, we don't want to do reference count mutations for every compiled `local.{get,set}`, nor for every function call. Therefore, we use a variation of **deferred reference counting**, where we only mutate reference counts when storing `VMExternRef`s somewhere that outlives the activation: into a global or table. Simultaneously, we over-approximate the set of `VMExternRef`s that are inside Wasm function activations. Periodically, we walk the stack at GC safe points, and use stack map information to precisely identify the set of `VMExternRef`s inside Wasm activations. Then we take the difference between this precise set and our over-approximation, and decrement the reference count for each of the `VMExternRef`s that are in our over-approximation but not in the precise set. Finally, the over-approximation is replaced with the precise set. The `VMExternRefActivationsTable` implements the over-approximized set of `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and passing it a `VMExternRef` moves the `VMExternRef` into the table, and the compiled Wasm function logically "borrows" the `VMExternRef` from the table. Similarly, `global.get` and `table.get` operations clone the gotten `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the reference out of the table. When a `VMExternRef` is returned to host code from a Wasm function, the host increments the reference count (because the reference is logically "borrowed" from the `VMExternRefActivationsTable` and the reference count from the table will be dropped at the next GC). For more general information on deferred reference counting, see *An Examination of Deferred Reference Counting and Cycle Detection* by Quinane: https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf cc #929 Fixes #1804
4 years ago
[[example]]
name = "tokio"
required-features = ["wasmtime-wasi/tokio"]
[profile.dev.package.backtrace]
debug = false # FIXME(#1813)
[[bench]]
name = "instantiation"
harness = false