|
|
|
[package]
|
|
|
|
name = "wasmtime-cli"
|
|
|
|
version = "0.20.0"
|
|
|
|
authors = ["The Wasmtime Project Developers"]
|
|
|
|
description = "Command-line interface for Wasmtime"
|
|
|
|
license = "Apache-2.0 WITH LLVM-exception"
|
|
|
|
documentation = "https://bytecodealliance.github.io/wasmtime/cli.html"
|
|
|
|
categories = ["wasm"]
|
|
|
|
keywords = ["webassembly", "wasm"]
|
|
|
|
repository = "https://github.com/bytecodealliance/wasmtime"
|
|
|
|
readme = "README.md"
|
|
|
|
edition = "2018"
|
|
|
|
default-run = "wasmtime"
|
|
|
|
|
|
|
|
[lib]
|
|
|
|
doctest = false
|
|
|
|
|
|
|
|
[[bin]]
|
|
|
|
name = "wasmtime"
|
|
|
|
path = "src/bin/wasmtime.rs"
|
|
|
|
doc = false
|
|
|
|
|
|
|
|
[dependencies]
|
|
|
|
# Enable all supported architectures by default.
|
|
|
|
wasmtime = { path = "crates/wasmtime", version = "0.20.0", default-features = false, features = ['cache'] }
|
|
|
|
wasmtime-cache = { path = "crates/cache", version = "0.20.0" }
|
|
|
|
wasmtime-debug = { path = "crates/debug", version = "0.20.0" }
|
|
|
|
wasmtime-environ = { path = "crates/environ", version = "0.20.0" }
|
|
|
|
wasmtime-jit = { path = "crates/jit", version = "0.20.0" }
|
|
|
|
wasmtime-obj = { path = "crates/obj", version = "0.20.0" }
|
|
|
|
wasmtime-wast = { path = "crates/wast", version = "0.20.0" }
|
|
|
|
wasmtime-wasi = { path = "crates/wasi", version = "0.20.0" }
|
|
|
|
wasi-common = { path = "crates/wasi-common", version = "0.20.0" }
|
|
|
|
structopt = { version = "0.3.5", features = ["color", "suggestions"] }
|
|
|
|
object = { version = "0.21.1", default-features = false, features = ["write"] }
|
|
|
|
anyhow = "1.0.19"
|
|
|
|
target-lexicon = { version = "0.11.0", default-features = false }
|
|
|
|
pretty_env_logger = "0.4.0"
|
|
|
|
file-per-thread-logger = "0.1.1"
|
|
|
|
wat = "1.0.23"
|
|
|
|
libc = "0.2.60"
|
externref: implement stack map-based garbage collection
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929
Fixes #1804
4 years ago
|
|
|
log = "0.4.8"
|
|
|
|
rayon = "1.2.1"
|
Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes #139
Closes #860
Closes #900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
5 years ago
|
|
|
humantime = "1.3.0"
|
|
|
|
|
|
|
|
[dev-dependencies]
|
|
|
|
env_logger = "0.7.1"
|
|
|
|
filecheck = "0.5.0"
|
|
|
|
more-asserts = "0.2.1"
|
|
|
|
tempfile = "3.1.0"
|
|
|
|
test-programs = { path = "crates/test-programs" }
|
|
|
|
wasmtime-fuzzing = { path = "crates/fuzzing" }
|
|
|
|
wasmtime-runtime = { path = "crates/runtime" }
|
|
|
|
tracing-subscriber = "0.2.0"
|
|
|
|
|
|
|
|
[build-dependencies]
|
|
|
|
anyhow = "1.0.19"
|
|
|
|
|
|
|
|
[profile.release.build-override]
|
|
|
|
opt-level = 0
|
|
|
|
|
|
|
|
[workspace]
|
|
|
|
members = [
|
|
|
|
"cranelift",
|
|
|
|
"crates/c-api",
|
|
|
|
"crates/fuzzing",
|
|
|
|
"crates/misc/run-examples",
|
|
|
|
"crates/misc/rust",
|
|
|
|
"crates/wiggle",
|
|
|
|
"crates/wiggle/wasmtime",
|
|
|
|
"examples/fib-debug/wasm",
|
|
|
|
"examples/wasi/wasm",
|
|
|
|
"fuzz",
|
|
|
|
]
|
|
|
|
|
|
|
|
[features]
|
|
|
|
default = ["jitdump", "wasmtime/wat", "wasmtime/parallel-compilation"]
|
|
|
|
lightbeam = ["wasmtime/lightbeam"]
|
|
|
|
jitdump = ["wasmtime/jitdump"]
|
|
|
|
vtune = ["wasmtime/vtune"]
|
|
|
|
|
|
|
|
# Try the experimental, work-in-progress new x86_64 backend. This is not stable
|
|
|
|
# as of June 2020.
|
|
|
|
experimental_x64 = ["wasmtime-jit/experimental_x64"]
|
|
|
|
|
|
|
|
[badges]
|
|
|
|
maintenance = { status = "actively-developed" }
|
|
|
|
|
|
|
|
[[test]]
|
|
|
|
name = "host_segfault"
|
|
|
|
harness = false
|
externref: implement stack map-based garbage collection
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929
Fixes #1804
4 years ago
|
|
|
|
|
|
|
[profile.dev.package.backtrace]
|
|
|
|
debug = false # FIXME(#1813)
|