|
|
|
// To handle out-of-bounds reads and writes we use segfaults right now. We only
|
|
|
|
// want to catch a subset of segfaults, however, rather than all segfaults
|
|
|
|
// happening everywhere. The purpose of this test is to ensure that we *don't*
|
|
|
|
// catch segfaults if it happens in a random place in the code, but we instead
|
|
|
|
// bail out of our segfault handler early.
|
|
|
|
//
|
|
|
|
// This is sort of hard to test for but the general idea here is that we confirm
|
|
|
|
// that execution made it to our `segfault` function by printing something, and
|
|
|
|
// then we also make sure that stderr is empty to confirm that no weird panics
|
|
|
|
// happened or anything like that.
|
|
|
|
|
|
|
|
use std::env;
|
|
|
|
use std::process::{Command, ExitStatus};
|
|
|
|
use wasmtime::*;
|
|
|
|
|
|
|
|
const VAR_NAME: &str = "__TEST_TO_RUN";
|
|
|
|
const CONFIRM: &str = "well at least we ran up to the segfault\n";
|
|
|
|
|
|
|
|
fn segfault() -> ! {
|
|
|
|
unsafe {
|
|
|
|
print!("{}", CONFIRM);
|
|
|
|
*(0x4 as *mut i32) = 3;
|
|
|
|
unreachable!()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes #139
Closes #860
Closes #900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
5 years ago
|
|
|
fn overrun_the_stack() -> usize {
|
|
|
|
let mut a = [0u8; 1024];
|
|
|
|
if a.as_mut_ptr() as usize == 1 {
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
return a.as_mut_ptr() as usize + overrun_the_stack();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
// Skip this tests if it looks like we're in a cross-compiled situation and
|
|
|
|
// we're emulating this test for a different platform. In that scenario
|
|
|
|
// emulators (like QEMU) tend to not report signals the same way and such.
|
|
|
|
if std::env::vars()
|
|
|
|
.filter(|(k, _v)| k.starts_with("CARGO_TARGET") && k.ends_with("RUNNER"))
|
|
|
|
.count()
|
|
|
|
> 0
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
let tests: &[(&str, fn())] = &[
|
|
|
|
("normal segfault", || segfault()),
|
|
|
|
("make instance then segfault", || {
|
|
|
|
let store = Store::default();
|
|
|
|
let module = Module::new(&store, "(module)").unwrap();
|
|
|
|
let _instance = Instance::new(&module, &[]).unwrap();
|
|
|
|
segfault();
|
|
|
|
}),
|
Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes #139
Closes #860
Closes #900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
5 years ago
|
|
|
("make instance then overrun the stack", || {
|
|
|
|
let store = Store::default();
|
|
|
|
let module = Module::new(&store, "(module)").unwrap();
|
|
|
|
let _instance = Instance::new(&module, &[]).unwrap();
|
|
|
|
println!("stack overrun: {}", overrun_the_stack());
|
|
|
|
}),
|
|
|
|
("segfault in a host function", || {
|
|
|
|
let store = Store::default();
|
|
|
|
let module = Module::new(&store, r#"(import "" "" (func)) (start 0)"#).unwrap();
|
|
|
|
let segfault = Func::wrap(&store, || segfault());
|
|
|
|
Instance::new(&module, &[segfault.into()]).unwrap();
|
|
|
|
}),
|
|
|
|
];
|
|
|
|
match env::var(VAR_NAME) {
|
|
|
|
Ok(s) => {
|
|
|
|
let test = tests
|
|
|
|
.iter()
|
|
|
|
.find(|p| p.0 == s)
|
|
|
|
.expect("failed to find test")
|
|
|
|
.1;
|
|
|
|
test();
|
|
|
|
}
|
|
|
|
Err(_) => {
|
|
|
|
for (name, _test) in tests {
|
|
|
|
runtest(name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn runtest(name: &str) {
|
|
|
|
let me = env::current_exe().unwrap();
|
|
|
|
let mut cmd = Command::new(me);
|
|
|
|
cmd.env(VAR_NAME, name);
|
|
|
|
let output = cmd.output().expect("failed to spawn subprocess");
|
|
|
|
let stdout = String::from_utf8_lossy(&output.stdout);
|
|
|
|
let stderr = String::from_utf8_lossy(&output.stderr);
|
|
|
|
let mut desc = format!("got status: {}", output.status);
|
|
|
|
if !stdout.trim().is_empty() {
|
|
|
|
desc.push_str("\nstdout: ----\n");
|
|
|
|
desc.push_str(" ");
|
|
|
|
desc.push_str(&stdout.replace("\n", "\n "));
|
|
|
|
}
|
|
|
|
if !stderr.trim().is_empty() {
|
|
|
|
desc.push_str("\nstderr: ----\n");
|
|
|
|
desc.push_str(" ");
|
|
|
|
desc.push_str(&stderr.replace("\n", "\n "));
|
|
|
|
}
|
|
|
|
if is_segfault(&output.status) {
|
|
|
|
assert!(
|
|
|
|
stdout.ends_with(CONFIRM) && stderr.is_empty(),
|
|
|
|
"failed to find confirmation in test `{}`\n{}",
|
|
|
|
name,
|
|
|
|
desc
|
|
|
|
);
|
Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes #139
Closes #860
Closes #900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
5 years ago
|
|
|
} else if name.contains("overrun the stack") {
|
|
|
|
assert!(
|
|
|
|
stderr.contains("thread 'main' has overflowed its stack"),
|
|
|
|
"bad stderr: {}",
|
|
|
|
stderr
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
panic!("\n\nexpected a segfault on `{}`\n{}\n\n", name, desc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(unix)]
|
|
|
|
fn is_segfault(status: &ExitStatus) -> bool {
|
|
|
|
use std::os::unix::prelude::*;
|
|
|
|
|
|
|
|
match status.signal() {
|
|
|
|
Some(libc::SIGSEGV) | Some(libc::SIGBUS) => true,
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(windows)]
|
|
|
|
fn is_segfault(status: &ExitStatus) -> bool {
|
|
|
|
match status.code().map(|s| s as u32) {
|
|
|
|
Some(0xc0000005) => true,
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|