Browse Source

Implement `fma`/`fabs`/`fneg`/`fcopysign` on the interpreter (#4367)

* cranelift: Implement `fma` on interpreter

* cranelift: Implement `fabs` on interpreter

* cranelift: Fix `fneg` implementation on interpreter

`fneg` was implemented as `0 - x` which is not correct according to the
standard since that operation makes no guarantees on what the output
is when the input is `NaN`. However for `fneg` the output for `NaN`
inputs is fully defined.

* cranelift: Implement `fcopysign` on interpreter
pull/4373/head
Afonso Bordado 2 years ago
committed by GitHub
parent
commit
2003ae99a0
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 71
      cranelift/codegen/src/ir/immediates.rs
  2. 93
      cranelift/filetests/filetests/runtests/fabs.clif
  3. 107
      cranelift/filetests/filetests/runtests/fcopysign.clif
  4. 119
      cranelift/filetests/filetests/runtests/fma.clif
  5. 93
      cranelift/filetests/filetests/runtests/fneg.clif
  6. 8
      cranelift/interpreter/src/step.rs
  7. 30
      cranelift/interpreter/src/value.rs

71
cranelift/codegen/src/ir/immediates.rs

@ -12,6 +12,7 @@ use core::str::FromStr;
use core::{i32, u32}; use core::{i32, u32};
#[cfg(feature = "enable-serde")] #[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use std::ops::Neg;
/// Convert a type into a vector of bytes; all implementors in this file must use little-endian /// Convert a type into a vector of bytes; all implementors in this file must use little-endian
/// orderings of bytes to match WebAssembly's little-endianness. /// orderings of bytes to match WebAssembly's little-endianness.
@ -761,18 +762,39 @@ impl Ieee32 {
/// Check if the value is a NaN. /// Check if the value is a NaN.
pub fn is_nan(&self) -> bool { pub fn is_nan(&self) -> bool {
f32::from_bits(self.0).is_nan() self.as_f32().is_nan()
}
/// Converts Self to a rust f32
pub fn as_f32(self) -> f32 {
f32::from_bits(self.0)
}
/// Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a
/// more accurate result than an unfused multiply-add.
pub fn mul_add(&self, a: Self, b: Self) -> Self {
Self::with_float(self.as_f32().mul_add(a.as_f32(), b.as_f32()))
} }
/// Returns the square root of self. /// Returns the square root of self.
pub fn sqrt(self) -> Self { pub fn sqrt(self) -> Self {
Self::with_float(f32::from_bits(self.0).sqrt()) Self::with_float(self.as_f32().sqrt())
}
/// Computes the absolute value of self.
pub fn abs(self) -> Self {
Self::with_float(self.as_f32().abs())
}
/// Returns a number composed of the magnitude of self and the sign of sign.
pub fn copysign(self, sign: Self) -> Self {
Self::with_float(self.as_f32().copysign(sign.as_f32()))
} }
} }
impl PartialOrd for Ieee32 { impl PartialOrd for Ieee32 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
f32::from_bits(self.0).partial_cmp(&f32::from_bits(other.0)) self.as_f32().partial_cmp(&other.as_f32())
} }
} }
@ -806,6 +828,14 @@ impl IntoBytes for Ieee32 {
} }
} }
impl Neg for Ieee32 {
type Output = Ieee32;
fn neg(self) -> Self::Output {
Self::with_float(self.as_f32().neg())
}
}
impl Ieee64 { impl Ieee64 {
/// Create a new `Ieee64` containing the bits of `x`. /// Create a new `Ieee64` containing the bits of `x`.
pub fn with_bits(x: u64) -> Self { pub fn with_bits(x: u64) -> Self {
@ -851,18 +881,39 @@ impl Ieee64 {
/// Check if the value is a NaN. For [Ieee64], this means checking that the 11 exponent bits are /// Check if the value is a NaN. For [Ieee64], this means checking that the 11 exponent bits are
/// all set. /// all set.
pub fn is_nan(&self) -> bool { pub fn is_nan(&self) -> bool {
f64::from_bits(self.0).is_nan() self.as_f64().is_nan()
}
/// Converts Self to a rust f64
pub fn as_f64(self) -> f64 {
f64::from_bits(self.0)
}
/// Fused multiply-add. Computes (self * a) + b with only one rounding error, yielding a
/// more accurate result than an unfused multiply-add.
pub fn mul_add(&self, a: Self, b: Self) -> Self {
Self::with_float(self.as_f64().mul_add(a.as_f64(), b.as_f64()))
} }
/// Returns the square root of self. /// Returns the square root of self.
pub fn sqrt(self) -> Self { pub fn sqrt(self) -> Self {
Self::with_float(f64::from_bits(self.0).sqrt()) Self::with_float(self.as_f64().sqrt())
}
/// Computes the absolute value of self.
pub fn abs(self) -> Self {
Self::with_float(self.as_f64().abs())
}
/// Returns a number composed of the magnitude of self and the sign of sign.
pub fn copysign(self, sign: Self) -> Self {
Self::with_float(self.as_f64().copysign(sign.as_f64()))
} }
} }
impl PartialOrd for Ieee64 { impl PartialOrd for Ieee64 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
f64::from_bits(self.0).partial_cmp(&f64::from_bits(other.0)) self.as_f64().partial_cmp(&other.as_f64())
} }
} }
@ -902,6 +953,14 @@ impl IntoBytes for Ieee64 {
} }
} }
impl Neg for Ieee64 {
type Output = Ieee64;
fn neg(self) -> Self::Output {
Self::with_float(self.as_f64().neg())
}
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;

93
cranelift/filetests/filetests/runtests/fabs.clif

@ -0,0 +1,93 @@
test interpret
test run
target aarch64
target x86_64
target s390x
function %fabs_f32(f32) -> f32 {
block0(v0: f32):
v1 = fabs v0
return v1
}
; run: %fabs_f32(0x9.0) == 0x9.0
; run: %fabs_f32(-0x9.0) == 0x9.0
; run: %fabs_f32(0x0.0) == 0x0.0
; run: %fabs_f32(-0x0.0) == 0x0.0
; F32 Inf
; run: %fabs_f32(Inf) == Inf
; run: %fabs_f32(-Inf) == +Inf
; F32 Epsilon / Max / Min Positive
; run: %fabs_f32(0x1.000000p-23) == 0x1.000000p-23
; run: %fabs_f32(-0x1.000000p-23) == 0x1.000000p-23
; run: %fabs_f32(0x1.fffffep127) == 0x1.fffffep127
; run: %fabs_f32(-0x1.fffffep127) == 0x1.fffffep127
; run: %fabs_f32(0x1.000000p-126) == 0x1.000000p-126
; run: %fabs_f32(-0x1.000000p-126) == 0x1.000000p-126
; F32 Subnormals
; run: %fabs_f32(0x0.800000p-126) == 0x0.800000p-126
; run: %fabs_f32(-0x0.800000p-126) == 0x0.800000p-126
; run: %fabs_f32(0x0.000002p-126) == 0x0.000002p-126
; run: %fabs_f32(-0x0.000002p-126) == 0x0.000002p-126
; F32 NaN's
; Unlike with other operations fabs is guaranteed to only affect the sign bit
; run: %fabs_f32(+NaN) == +NaN
; run: %fabs_f32(-NaN) == +NaN
; run: %fabs_f32(+NaN:0x0) == +NaN:0x0
; run: %fabs_f32(+NaN:0x1) == +NaN:0x1
; run: %fabs_f32(+NaN:0x300001) == +NaN:0x300001
; run: %fabs_f32(-NaN:0x0) == +NaN:0x0
; run: %fabs_f32(-NaN:0x1) == +NaN:0x1
; run: %fabs_f32(-NaN:0x300001) == +NaN:0x300001
; run: %fabs_f32(+sNaN:0x1) == +sNaN:0x1
; run: %fabs_f32(-sNaN:0x1) == +sNaN:0x1
; run: %fabs_f32(+sNaN:0x200001) == +sNaN:0x200001
; run: %fabs_f32(-sNaN:0x200001) == +sNaN:0x200001
function %fabs_f64(f64) -> f64 {
block0(v0: f64):
v1 = fabs v0
return v1
}
; run: %fabs_f64(0x9.0) == 0x9.0
; run: %fabs_f64(-0x9.0) == 0x9.0
; run: %fabs_f64(0x0.0) == 0x0.0
; run: %fabs_f64(-0x0.0) == 0x0.0
; F64 Inf
; run: %fabs_f64(Inf) == Inf
; run: %fabs_f64(-Inf) == +Inf
; F64 Epsilon / Max / Min Positive
; run: %fabs_f64(0x1.0000000000000p-52) == 0x1.0000000000000p-52
; run: %fabs_f64(-0x1.0000000000000p-52) == 0x1.0000000000000p-52
; run: %fabs_f64(0x1.fffffffffffffp1023) == 0x1.fffffffffffffp1023
; run: %fabs_f64(-0x1.fffffffffffffp1023) == 0x1.fffffffffffffp1023
; run: %fabs_f64(0x1.0000000000000p-1022) == 0x1.0000000000000p-1022
; run: %fabs_f64(-0x1.0000000000000p-1022) == 0x1.0000000000000p-1022
; F64 Subnormals
; run: %fabs_f64(0x0.8000000000000p-1022) == 0x0.8000000000000p-1022
; run: %fabs_f64(-0x0.8000000000000p-1022) == 0x0.8000000000000p-1022
; run: %fabs_f64(0x0.0000000000001p-1022) == 0x0.0000000000001p-1022
; run: %fabs_f64(-0x0.0000000000001p-1022) == 0x0.0000000000001p-1022
; F64 NaN's
; Unlike with other operations fabs is guaranteed to only affect the sign bit
; run: %fabs_f64(+NaN) == +NaN
; run: %fabs_f64(-NaN) == +NaN
; run: %fabs_f64(+NaN:0x0) == +NaN:0x0
; run: %fabs_f64(+NaN:0x1) == +NaN:0x1
; run: %fabs_f64(+NaN:0x4000000000001) == +NaN:0x4000000000001
; run: %fabs_f64(-NaN:0x0) == +NaN:0x0
; run: %fabs_f64(-NaN:0x1) == +NaN:0x1
; run: %fabs_f64(-NaN:0x4000000000001) == +NaN:0x4000000000001
; run: %fabs_f64(+sNaN:0x1) == +sNaN:0x1
; run: %fabs_f64(-sNaN:0x1) == +sNaN:0x1
; run: %fabs_f64(+sNaN:0x4000000000001) == +sNaN:0x4000000000001
; run: %fabs_f64(-sNaN:0x4000000000001) == +sNaN:0x4000000000001

107
cranelift/filetests/filetests/runtests/fcopysign.clif

@ -0,0 +1,107 @@
test interpret
test run
target aarch64
target x86_64
target s390x
function %fcopysign_f32(f32, f32) -> f32 {
block0(v0: f32, v1: f32):
v2 = fcopysign v0, v1
return v2
}
; run: %fcopysign_f32(0x9.0, 0x9.0) == 0x9.0
; run: %fcopysign_f32(-0x9.0, 0x9.0) == 0x9.0
; run: %fcopysign_f32(0x9.0, -0x9.0) == -0x9.0
; run: %fcopysign_f32(-0x9.0, -0x9.0) == -0x9.0
; run: %fcopysign_f32(0x0.0, -0x0.0) == -0x0.0
; run: %fcopysign_f32(-0x0.0, 0x0.0) == 0x0.0
; F32 Inf
; run: %fcopysign_f32(Inf, Inf) == Inf
; run: %fcopysign_f32(-Inf, Inf) == Inf
; run: %fcopysign_f32(Inf, -Inf) == -Inf
; run: %fcopysign_f32(-Inf, -Inf) == -Inf
; F32 Epsilon / Max / Min Positive
; run: %fcopysign_f32(0x1.000000p-23, -0x0.0) == -0x1.000000p-23
; run: %fcopysign_f32(-0x1.000000p-23, 0x0.0) == 0x1.000000p-23
; run: %fcopysign_f32(0x1.fffffep127, -0x0.0) == -0x1.fffffep127
; run: %fcopysign_f32(-0x1.fffffep127, 0x0.0) == 0x1.fffffep127
; run: %fcopysign_f32(0x1.000000p-126, -0x0.0) == -0x1.000000p-126
; run: %fcopysign_f32(-0x1.000000p-126, 0x0.0) == 0x1.000000p-126
; F32 Subnormals
; run: %fcopysign_f32(0x0.800000p-126, -0x0.0) == -0x0.800000p-126
; run: %fcopysign_f32(-0x0.800000p-126, 0x0.0) == 0x0.800000p-126
; run: %fcopysign_f32(0x0.000002p-126, -0x0.0) == -0x0.000002p-126
; run: %fcopysign_f32(-0x0.000002p-126, 0x0.0) == 0x0.000002p-126
; F32 NaN's
; Unlike with other operations fcopysign is guaranteed to only affect the sign bit
; run: %fcopysign_f32(0x0.0, -NaN) == -0x0.0
; run: %fcopysign_f32(0x3.0, +sNaN:0x1) == 0x3.0
; run: %fcopysign_f32(Inf, -NaN) == -Inf
; run: %fcopysign_f32(+NaN, -NaN) == -NaN
; run: %fcopysign_f32(-NaN, +NaN) == +NaN
; run: %fcopysign_f32(+NaN:0x0, -NaN) == -NaN:0x0
; run: %fcopysign_f32(+NaN:0x1, -NaN) == -NaN:0x1
; run: %fcopysign_f32(+NaN:0x300001, -NaN) == -NaN:0x300001
; run: %fcopysign_f32(-NaN:0x0, +NaN) == +NaN:0x0
; run: %fcopysign_f32(-NaN:0x1, +NaN) == +NaN:0x1
; run: %fcopysign_f32(-NaN:0x300001, +NaN) == +NaN:0x300001
; run: %fcopysign_f32(+sNaN:0x1, -NaN) == -sNaN:0x1
; run: %fcopysign_f32(-sNaN:0x1, +NaN) == +sNaN:0x1
; run: %fcopysign_f32(+sNaN:0x200001, -NaN) == -sNaN:0x200001
; run: %fcopysign_f32(-sNaN:0x200001, +NaN) == +sNaN:0x200001
function %fcopysign_f64(f64, f64) -> f64 {
block0(v0: f64, v1: f64):
v2 = fcopysign v0, v1
return v2
}
; run: %fcopysign_f64(0x9.0, 0x9.0) == 0x9.0
; run: %fcopysign_f64(-0x9.0, 0x9.0) == 0x9.0
; run: %fcopysign_f64(0x9.0, -0x9.0) == -0x9.0
; run: %fcopysign_f64(-0x9.0, -0x9.0) == -0x9.0
; run: %fcopysign_f64(0x0.0, -0x0.0) == -0x0.0
; run: %fcopysign_f64(-0x0.0, 0x0.0) == 0x0.0
; F64 Inf
; run: %fcopysign_f64(Inf, Inf) == Inf
; run: %fcopysign_f64(-Inf, Inf) == Inf
; run: %fcopysign_f64(Inf, -Inf) == -Inf
; run: %fcopysign_f64(-Inf, -Inf) == -Inf
; F64 Epsilon / Max / Min Positive
; run: %fcopysign_f64(0x1.0000000000000p-52, -0x0.0) == -0x1.0000000000000p-52
; run: %fcopysign_f64(-0x1.0000000000000p-52, 0x0.0) == 0x1.0000000000000p-52
; run: %fcopysign_f64(0x1.fffffffffffffp1023, -0x0.0) == -0x1.fffffffffffffp1023
; run: %fcopysign_f64(-0x1.fffffffffffffp1023, 0x0.0) == 0x1.fffffffffffffp1023
; run: %fcopysign_f64(0x1.0000000000000p-1022, -0x0.0) == -0x1.0000000000000p-1022
; run: %fcopysign_f64(-0x1.0000000000000p-1022, 0x0.0) == 0x1.0000000000000p-1022
; F64 Subnormals
; run: %fcopysign_f64(0x0.8000000000000p-1022, -0x0.0) == -0x0.8000000000000p-1022
; run: %fcopysign_f64(-0x0.8000000000000p-1022, 0x0.0) == 0x0.8000000000000p-1022
; run: %fcopysign_f64(0x0.0000000000001p-1022, -0x0.0) == -0x0.0000000000001p-1022
; run: %fcopysign_f64(-0x0.0000000000001p-1022, 0x0.0) == 0x0.0000000000001p-1022
; F64 NaN's
; Unlike with other operations fcopysign is guaranteed to only affect the sign bit
; run: %fcopysign_f64(0x0.0, -NaN) == -0x0.0
; run: %fcopysign_f64(0x3.0, +sNaN:0x1) == 0x3.0
; run: %fcopysign_f64(Inf, -NaN) == -Inf
; run: %fcopysign_f64(+NaN, -NaN) == -NaN
; run: %fcopysign_f64(-NaN, +NaN) == +NaN
; run: %fcopysign_f64(+NaN:0x0, -NaN) == -NaN:0x0
; run: %fcopysign_f64(+NaN:0x1, -NaN) == -NaN:0x1
; run: %fcopysign_f64(+NaN:0x4000000000001, -NaN) == -NaN:0x4000000000001
; run: %fcopysign_f64(-NaN:0x0, +NaN) == +NaN:0x0
; run: %fcopysign_f64(-NaN:0x1, +NaN) == +NaN:0x1
; run: %fcopysign_f64(-NaN:0x4000000000001, +NaN) == +NaN:0x4000000000001
; run: %fcopysign_f64(+sNaN:0x1, -NaN) == -sNaN:0x1
; run: %fcopysign_f64(-sNaN:0x1, +NaN) == +sNaN:0x1
; run: %fcopysign_f64(+sNaN:0x4000000000001, -NaN) == -sNaN:0x4000000000001
; run: %fcopysign_f64(-sNaN:0x4000000000001, +NaN) == +sNaN:0x4000000000001

119
cranelift/filetests/filetests/runtests/fma.clif

@ -0,0 +1,119 @@
test interpret
test run
target aarch64
target s390x
function %fma_f32(f32, f32, f32) -> f32 {
block0(v0: f32, v1: f32, v2: f32):
v3 = fma v0, v1, v2
return v3
}
; run: %fma_f32(0x9.0, 0x9.0, 0x9.0) == 0x1.680000p6
; run: %fma_f32(0x83.0, 0x2.68091p6, 0x9.88721p1) == 0x1.3b88e6p14
; run: %fma_f32(0x0.0, 0x0.0, 0x0.0) == 0x0.0
; run: %fma_f32(0x0.0, 0x0.0, -0x0.0) == 0x0.0
; run: %fma_f32(0x0.0, -0x0.0, 0x0.0) == 0x0.0
; run: %fma_f32(-0x0.0, 0x0.0, 0x0.0) == 0x0.0
; run: %fma_f32(-Inf, -Inf, 0x0.0) == +Inf
; run: %fma_f32(Inf, -Inf, 0x0.0) == -Inf
; run: %fma_f32(-Inf, Inf, 0x0.0) == -Inf
; run: %fma_f32(Inf, -Inf, -Inf) == -Inf
; run: %fma_f32(-Inf, Inf, -Inf) == -Inf
; F32 Epsilon / Max / Min Positive
; run: %fma_f32(0x1.000000p-23, 0x1.000000p-23, 0x1.000000p-23) == 0x1.000002p-23
; run: %fma_f32(0x0.0, 0x0.0, 0x1.000000p-23) == 0x1.000000p-23
; run: %fma_f32(0x1.fffffep127, 0x1.fffffep127, 0x1.fffffep127) == +Inf
; run: %fma_f32(0x0.0, 0x0.0, 0x1.fffffep127) == 0x1.fffffep127
; run: %fma_f32(0x1.000000p-126, 0x1.000000p-126, 0x1.000000p-126) == 0x1.000000p-126
; run: %fma_f32(0x0.0, 0x0.0, 0x1.000000p-126) == 0x1.000000p-126
; F32 Subnormals
; run: %fma_f32(0x0.800000p-126, 0x0.800000p-126, 0x0.800000p-126) == 0x0.800000p-126
; run: %fma_f32(0x0.800000p-126, 0x0.800000p-126, 0x0.0) == 0x0.0
; run: %fma_f32(0x0.0, 0x0.0, 0x0.800000p-126) == 0x0.800000p-126
; run: %fma_f32(0x0.000002p-126, 0x0.000002p-126, 0x0.000002p-126) == 0x0.000002p-126
; run: %fma_f32(0x0.000002p-126, 0x0.000002p-126, 0x0.0) == 0x0.0
; run: %fma_f32(0x0.0, 0x0.0, 0x0.000002p-126) == 0x0.000002p-126
;; The IEEE754 Standard does not make a lot of guarantees about what
;; comes out of NaN producing operations, we just check if its a NaN
function %fma_is_nan_f32(f32, f32, f32) -> i32 {
block0(v0: f32, v1: f32, v2: f32):
v3 = fma v0, v1, v2
v4 = fcmp ne v3, v3
v5 = bint.i32 v4
return v5
}
; run: %fma_is_nan_f32(Inf, -Inf, Inf) == 1
; run: %fma_is_nan_f32(-Inf, Inf, Inf) == 1
; run: %fma_is_nan_f32(-Inf, -Inf, -Inf) == 1
; run: %fma_is_nan_f32(+NaN, 0x0.0, 0x0.0) == 1
; run: %fma_is_nan_f32(0x0.0, +NaN, 0x0.0) == 1
; run: %fma_is_nan_f32(0x0.0, 0x0.0, +NaN) == 1
; run: %fma_is_nan_f32(-NaN, 0x0.0, 0x0.0) == 1
; run: %fma_is_nan_f32(0x0.0, -NaN, 0x0.0) == 1
; run: %fma_is_nan_f32(0x0.0, 0x0.0, -NaN) == 1
function %fma_f64(f64, f64, f64) -> f64 {
block0(v0: f64, v1: f64, v2: f64):
v3 = fma v0, v1, v2
return v3
}
; run: %fma_f64(0x9.0, 0x9.0, 0x9.0) == 0x1.680000p6
; run: %fma_f64(0x1.3b88ea148dd4ap14, 0x2.680916809121p6, 0x9.887218721837p1) == 0x1.7ba6ebee17417p21
; run: %fma_f64(0x0.0, 0x0.0, 0x0.0) == 0x0.0
; run: %fma_f64(0x0.0, 0x0.0, -0x0.0) == 0x0.0
; run: %fma_f64(0x0.0, -0x0.0, 0x0.0) == 0x0.0
; run: %fma_f64(-0x0.0, 0x0.0, 0x0.0) == 0x0.0
; run: %fma_f64(-Inf, -Inf, 0x0.0) == +Inf
; run: %fma_f64(Inf, -Inf, 0x0.0) == -Inf
; run: %fma_f64(-Inf, Inf, 0x0.0) == -Inf
; run: %fma_f64(Inf, -Inf, -Inf) == -Inf
; run: %fma_f64(-Inf, Inf, -Inf) == -Inf
; F64 Epsilon / Max / Min Positive
; run: %fma_f64(0x1.0000000000000p-52, 0x1.0000000000000p-52, 0x1.0000000000000p-52) == 0x1.0000000000001p-52
; run: %fma_f64(0x0.0, 0x0.0, 0x1.0000000000000p-52) == 0x1.0000000000000p-52
; run: %fma_f64(0x1.fffffffffffffp1023, 0x1.fffffffffffffp1023, 0x1.fffffffffffffp1023) == +Inf
; run: %fma_f64(0x0.0, 0x0.0, 0x1.fffffffffffffp1023) == 0x1.fffffffffffffp1023
; run: %fma_f64(0x1.0000000000000p-1022, 0x1.0000000000000p-1022, 0x1.0000000000000p-1022) == 0x1.0000000000000p-1022
; run: %fma_f64(0x0.0, 0x0.0, 0x1.0000000000000p-1022) == 0x1.0000000000000p-1022
; F64 Subnormals
; run: %fma_f64(0x0.8000000000000p-1022, 0x0.8000000000000p-1022, 0x0.8000000000000p-1022) == 0x0.8000000000000p-1022
; run: %fma_f64(0x0.8000000000000p-1022, 0x0.8000000000000p-1022, 0x0.0) == 0x0.0
; run: %fma_f64(0x0.0, 0x0.0, 0x0.8000000000000p-1022) == 0x0.8000000000000p-1022
; run: %fma_f64(0x0.0000000000001p-1022, 0x0.0000000000001p-1022, 0x0.0000000000001p-1022) == 0x0.0000000000001p-1022
; run: %fma_f64(0x0.0000000000001p-1022, 0x0.0000000000001p-1022, 0x0.0) == 0x0.0
; run: %fma_f64(0x0.0, 0x0.0, 0x0.0000000000001p-1022) == 0x0.0000000000001p-1022
;; The IEEE754 Standard does not make a lot of guarantees about what
;; comes out of NaN producing operations, we just check if its a NaN
function %fma_is_nan_f64(f64, f64, f64) -> i32 {
block0(v0: f64, v1: f64, v2: f64):
v3 = fma v0, v1, v2
v4 = fcmp ne v3, v3
v5 = bint.i32 v4
return v5
}
; run: %fma_is_nan_f64(Inf, -Inf, Inf) == 1
; run: %fma_is_nan_f64(-Inf, Inf, Inf) == 1
; run: %fma_is_nan_f64(-Inf, -Inf, -Inf) == 1
; run: %fma_is_nan_f64(+NaN, 0x0.0, 0x0.0) == 1
; run: %fma_is_nan_f64(0x0.0, +NaN, 0x0.0) == 1
; run: %fma_is_nan_f64(0x0.0, 0x0.0, +NaN) == 1
; run: %fma_is_nan_f64(-NaN, 0x0.0, 0x0.0) == 1
; run: %fma_is_nan_f64(0x0.0, -NaN, 0x0.0) == 1
; run: %fma_is_nan_f64(0x0.0, 0x0.0, -NaN) == 1

93
cranelift/filetests/filetests/runtests/fneg.clif

@ -0,0 +1,93 @@
test interpret
test run
target aarch64
target x86_64
target s390x
function %fneg_f32(f32) -> f32 {
block0(v0: f32):
v1 = fneg v0
return v1
}
; run: %fneg_f32(0x9.0) == -0x9.0
; run: %fneg_f32(-0x9.0) == 0x9.0
; run: %fneg_f32(0x0.0) == -0x0.0
; run: %fneg_f32(-0x0.0) == 0x0.0
; F32 Inf
; run: %fneg_f32(Inf) == -Inf
; run: %fneg_f32(-Inf) == +Inf
; F32 Epsilon / Max / Min Positive
; run: %fneg_f32(0x1.000000p-23) == -0x1.000000p-23
; run: %fneg_f32(-0x1.000000p-23) == 0x1.000000p-23
; run: %fneg_f32(0x1.fffffep127) == -0x1.fffffep127
; run: %fneg_f32(-0x1.fffffep127) == 0x1.fffffep127
; run: %fneg_f32(0x1.000000p-126) == -0x1.000000p-126
; run: %fneg_f32(-0x1.000000p-126) == 0x1.000000p-126
; F32 Subnormals
; run: %fneg_f32(0x0.800000p-126) == -0x0.800000p-126
; run: %fneg_f32(-0x0.800000p-126) == 0x0.800000p-126
; run: %fneg_f32(0x0.000002p-126) == -0x0.000002p-126
; run: %fneg_f32(-0x0.000002p-126) == 0x0.000002p-126
; F32 NaN's
; Unlike with other operations fneg is guaranteed to only affect the sign bit
; run: %fneg_f32(+NaN) == -NaN
; run: %fneg_f32(-NaN) == +NaN
; run: %fneg_f32(+NaN:0x0) == -NaN:0x0
; run: %fneg_f32(+NaN:0x1) == -NaN:0x1
; run: %fneg_f32(+NaN:0x300001) == -NaN:0x300001
; run: %fneg_f32(-NaN:0x0) == +NaN:0x0
; run: %fneg_f32(-NaN:0x1) == +NaN:0x1
; run: %fneg_f32(-NaN:0x300001) == +NaN:0x300001
; run: %fneg_f32(+sNaN:0x1) == -sNaN:0x1
; run: %fneg_f32(-sNaN:0x1) == +sNaN:0x1
; run: %fneg_f32(+sNaN:0x200001) == -sNaN:0x200001
; run: %fneg_f32(-sNaN:0x200001) == +sNaN:0x200001
function %fneg_f64(f64) -> f64 {
block0(v0: f64):
v1 = fneg v0
return v1
}
; run: %fneg_f64(0x9.0) == -0x9.0
; run: %fneg_f64(-0x9.0) == 0x9.0
; run: %fneg_f64(0x0.0) == -0x0.0
; run: %fneg_f64(-0x0.0) == 0x0.0
; F64 Inf
; run: %fneg_f64(+Inf) == -Inf
; run: %fneg_f64(-Inf) == +Inf
; F64 Epsilon / Max / Min Positive
; run: %fneg_f64(0x1.0000000000000p-52) == -0x1.0000000000000p-52
; run: %fneg_f64(-0x1.0000000000000p-52) == 0x1.0000000000000p-52
; run: %fneg_f64(0x1.fffffffffffffp1023) == -0x1.fffffffffffffp1023
; run: %fneg_f64(-0x1.fffffffffffffp1023) == 0x1.fffffffffffffp1023
; run: %fneg_f64(0x1.0000000000000p-1022) == -0x1.0000000000000p-1022
; run: %fneg_f64(-0x1.0000000000000p-1022) == 0x1.0000000000000p-1022
; F64 Subnormals
; run: %fneg_f64(0x0.8000000000000p-1022) == -0x0.8000000000000p-1022
; run: %fneg_f64(-0x0.8000000000000p-1022) == 0x0.8000000000000p-1022
; run: %fneg_f64(0x0.0000000000001p-1022) == -0x0.0000000000001p-1022
; run: %fneg_f64(-0x0.0000000000001p-1022) == 0x0.0000000000001p-1022
; F64 NaN's
; Unlike with other operations fneg is guaranteed to only affect the sign bit
; run: %fneg_f64(+NaN) == -NaN
; run: %fneg_f64(-NaN) == +NaN
; run: %fneg_f64(+NaN:0x0) == -NaN:0x0
; run: %fneg_f64(+NaN:0x1) == -NaN:0x1
; run: %fneg_f64(+NaN:0x4000000000001) == -NaN:0x4000000000001
; run: %fneg_f64(-NaN:0x0) == +NaN:0x0
; run: %fneg_f64(-NaN:0x1) == +NaN:0x1
; run: %fneg_f64(-NaN:0x4000000000001) == +NaN:0x4000000000001
; run: %fneg_f64(+sNaN:0x1) == -sNaN:0x1
; run: %fneg_f64(-sNaN:0x1) == +sNaN:0x1
; run: %fneg_f64(+sNaN:0x4000000000001) == -sNaN:0x4000000000001
; run: %fneg_f64(-sNaN:0x4000000000001) == +sNaN:0x4000000000001

8
cranelift/interpreter/src/step.rs

@ -679,10 +679,10 @@ where
Opcode::Fmul => binary(Value::mul, arg(0)?, arg(1)?)?, Opcode::Fmul => binary(Value::mul, arg(0)?, arg(1)?)?,
Opcode::Fdiv => binary(Value::div, arg(0)?, arg(1)?)?, Opcode::Fdiv => binary(Value::div, arg(0)?, arg(1)?)?,
Opcode::Sqrt => assign(Value::sqrt(arg(0)?)?), Opcode::Sqrt => assign(Value::sqrt(arg(0)?)?),
Opcode::Fma => unimplemented!("Fma"), Opcode::Fma => assign(Value::fma(arg(0)?, arg(1)?, arg(2)?)?),
Opcode::Fneg => binary(Value::sub, Value::float(0, ctrl_ty)?, arg(0)?)?, Opcode::Fneg => assign(Value::neg(arg(0)?)?),
Opcode::Fabs => unimplemented!("Fabs"), Opcode::Fabs => assign(Value::abs(arg(0)?)?),
Opcode::Fcopysign => unimplemented!("Fcopysign"), Opcode::Fcopysign => binary(Value::copysign, arg(0)?, arg(1)?)?,
Opcode::Fmin => choose( Opcode::Fmin => choose(
Value::is_nan(&arg(0)?)? || Value::lt(&arg(0)?, &arg(1)?)?, Value::is_nan(&arg(0)?)? || Value::lt(&arg(0)?, &arg(1)?)?,
arg(0)?, arg(0)?,

30
cranelift/interpreter/src/value.rs

@ -51,6 +51,12 @@ pub trait Value: Clone + From<DataValue> {
fn div(self, other: Self) -> ValueResult<Self>; fn div(self, other: Self) -> ValueResult<Self>;
fn rem(self, other: Self) -> ValueResult<Self>; fn rem(self, other: Self) -> ValueResult<Self>;
fn sqrt(self) -> ValueResult<Self>; fn sqrt(self) -> ValueResult<Self>;
fn fma(self, a: Self, b: Self) -> ValueResult<Self>;
fn abs(self) -> ValueResult<Self>;
// Float operations
fn neg(self) -> ValueResult<Self>;
fn copysign(self, sign: Self) -> ValueResult<Self>;
// Saturating arithmetic. // Saturating arithmetic.
fn add_sat(self, other: Self) -> ValueResult<Self>; fn add_sat(self, other: Self) -> ValueResult<Self>;
@ -468,6 +474,30 @@ impl Value for DataValue {
unary_match!(sqrt(&self); [F32, F64]; [Ieee32, Ieee64]) unary_match!(sqrt(&self); [F32, F64]; [Ieee32, Ieee64])
} }
fn fma(self, b: Self, c: Self) -> ValueResult<Self> {
match (self, b, c) {
(DataValue::F32(a), DataValue::F32(b), DataValue::F32(c)) => {
Ok(DataValue::F32(a.mul_add(b, c)))
}
(DataValue::F64(a), DataValue::F64(b), DataValue::F64(c)) => {
Ok(DataValue::F64(a.mul_add(b, c)))
}
(a, _b, _c) => Err(ValueError::InvalidType(ValueTypeClass::Float, a.ty())),
}
}
fn abs(self) -> ValueResult<Self> {
unary_match!(abs(&self); [F32, F64])
}
fn neg(self) -> ValueResult<Self> {
unary_match!(neg(&self); [F32, F64])
}
fn copysign(self, sign: Self) -> ValueResult<Self> {
binary_match!(copysign(&self, &sign); [F32, F64])
}
fn add_sat(self, other: Self) -> ValueResult<Self> { fn add_sat(self, other: Self) -> ValueResult<Self> {
binary_match!(saturating_add(self, &other); [I8, I16, I32, I64, I128, U8, U16, U32, U64, U128]) binary_match!(saturating_add(self, &other); [I8, I16, I32, I64, I128, U8, U16, U32, U64, U128])
} }

Loading…
Cancel
Save