Browse Source

Add other comparison operators, fix materialising locals, add more TODO comments (v. important)

pull/397/head
Jef 6 years ago
parent
commit
2173f4bcca
  1. 70
      src/backend.rs
  2. 16
      src/function_body.rs
  3. 16
      src/tests.rs

70
src/backend.rs

@ -117,6 +117,8 @@ impl Registers {
} }
} }
// TODO: Allow pushing condition codes to stack? We'd have to immediately
// materialise them into a register if anything is pushed above them.
/// Describes location of a value. /// Describes location of a value.
#[derive(Debug, Copy, Clone, PartialEq, Eq)] #[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ValueLocation { enum ValueLocation {
@ -816,8 +818,6 @@ pub fn set_local_i32(ctx: &mut Context, local_idx: u32) {
let val_loc = val.location(&ctx.block_state.locals); let val_loc = val.location(&ctx.block_state.locals);
let dst_loc = ctx.block_state.parent_locals.get(local_idx); let dst_loc = ctx.block_state.parent_locals.get(local_idx);
// TODO: We can have a specified stack depth where we always materialize locals,
// which would preserve linear runtime.
materialize_local(ctx, local_idx); materialize_local(ctx, local_idx);
if let Some(cur) = ctx if let Some(cur) = ctx
@ -834,42 +834,20 @@ pub fn set_local_i32(ctx: &mut Context, local_idx: u32) {
} }
fn materialize_local(ctx: &mut Context, local_idx: u32) { fn materialize_local(ctx: &mut Context, local_idx: u32) {
let mut to_repush = 0; // TODO: With real stack allocation we can make this constant-time. We can have a kind of
let mut out = None; // on-the-fly SSA transformation where we mark each `StackValue::Local` with an ID
// that increases with each assignment (this can be stored in block state and so
// TODO: With real stack allocation we can make this constant-time // is reset when the block ends). We then refcount the storage associated with each
for stack_val in ctx.block_state.stack.iter_mut().rev() { // "value ID" and in `pop` we free up slots whose refcount hits 0. This means we
match *stack_val { // can have even cleaner assembly than we currently do while giving us back
// linear runtime.
for index in (0..ctx.block_state.stack.len()).rev() {
match ctx.block_state.stack[index] {
// For now it's impossible for a local to be in RAX but that might be // For now it's impossible for a local to be in RAX but that might be
// possible in the future, so we check both cases. // possible in the future, so we check both cases.
StackValue::Local(i) if i == local_idx => { StackValue::Local(i) if i == local_idx => {
ctx.block_state.depth.reserve(1); ctx.block_state.depth.reserve(1);
*stack_val = StackValue::Pop; ctx.block_state.stack[index] = StackValue::Pop;
out = Some(*stack_val);
break;
}
StackValue::Pop => {
to_repush += 1;
}
_ => {}
}
}
if let Some(out) = out {
match out {
StackValue::Temp(gpr) => {
dynasm!(ctx.asm
; mov Rq(gpr), rax
);
}
StackValue::Pop => {
// TODO: Ideally we should do proper stack allocation so we
// don't have to check this at all (i.e. order on the
// physical stack and order on the logical stack should
// be independent).
assert_eq!(to_repush, 0);
match ctx.block_state.locals.get(local_idx) { match ctx.block_state.locals.get(local_idx) {
ValueLocation::Reg(r) => dynasm!(ctx.asm ValueLocation::Reg(r) => dynasm!(ctx.asm
; push Rq(r) ; push Rq(r)
@ -883,9 +861,14 @@ fn materialize_local(ctx: &mut Context, local_idx: u32) {
_ => unreachable!(), _ => unreachable!(),
} }
} }
_ => unreachable!(), StackValue::Pop => {
// We don't need to fail if the `Pop` is lower in the stack than the last instance of this
// local, but we might as well fail for now since we want to reimplement this using proper
// stack allocation anyway.
panic!("Tried to materialize local but the stack already contains elements");
}
_ => {}
} }
ctx.block_state.regs.release_scratch_gpr(RAX);
} }
} }
@ -965,10 +948,15 @@ macro_rules! cmp {
cmp!(i32_eq, sete, |a, b| a == b); cmp!(i32_eq, sete, |a, b| a == b);
cmp!(i32_neq, setne, |a, b| a != b); cmp!(i32_neq, setne, |a, b| a != b);
cmp!(i32_lt, setl, |a, b| a == b); // TODO: `dynasm-rs` inexplicably doesn't support setb
cmp!(i32_le, setle, |a, b| a == b); // cmp!(i32_lt_u, setb, |a, b| (a as u32) < (b as u32));
cmp!(i32_gt, setg, |a, b| a == b); cmp!(i32_le_u, setbe, |a, b| (a as u32) <= (b as u32));
cmp!(i32_ge, setge, |a, b| a == b); cmp!(i32_gt_u, seta, |a, b| (a as u32) > (b as u32));
cmp!(i32_ge_u, setae, |a, b| (a as u32) >= (b as u32));
cmp!(i32_lt_s, setl, |a, b| a < b);
cmp!(i32_le_s, setle, |a, b| a <= b);
cmp!(i32_gt_s, setg, |a, b| a == b);
cmp!(i32_ge_s, setge, |a, b| a == b);
/// Pops i32 predicate and branches to the specified label /// Pops i32 predicate and branches to the specified label
/// if the predicate is equal to zero. /// if the predicate is equal to zero.
@ -1128,7 +1116,7 @@ fn free_register(ctx: &mut Context, reg: GPR) {
} }
_ => unreachable!(), _ => unreachable!(),
} }
ctx.block_state.regs.release_scratch_gpr(RAX); ctx.block_state.regs.release_scratch_gpr(reg);
} }
} }

16
src/function_body.rs

@ -133,6 +133,9 @@ pub fn translate(
return_ty, return_ty,
)); ));
// TODO: We want to make this a state machine (maybe requires 1-element lookahead? Not sure) so that we
// can coelesce multiple `end`s and optimise break-at-end-of-block into noop. We can't do one
// without the other, since the main case we want to optimise is `(block (loop (br 1)))`.
for op in operators { for op in operators {
let op = op?; let op = op?;
@ -279,10 +282,15 @@ pub fn translate(
} }
Operator::I32Eq => i32_eq(ctx), Operator::I32Eq => i32_eq(ctx),
Operator::I32Ne => i32_neq(ctx), Operator::I32Ne => i32_neq(ctx),
Operator::I32LtS => i32_lt(ctx), Operator::I32LtS => i32_lt_s(ctx),
Operator::I32LeS => i32_le(ctx), Operator::I32LeS => i32_le_s(ctx),
Operator::I32GtS => i32_gt(ctx), Operator::I32GtS => i32_gt_s(ctx),
Operator::I32GeS => i32_ge(ctx), Operator::I32GeS => i32_ge_s(ctx),
// TODO: `dynasm-rs` inexplicably doesn't support setb
// Operator::I32LtU => i32_lt_u(ctx),
Operator::I32LeU => i32_le_u(ctx),
Operator::I32GtU => i32_gt_u(ctx),
Operator::I32GeU => i32_ge_u(ctx),
Operator::I32Add => i32_add(ctx), Operator::I32Add => i32_add(ctx),
Operator::I32Sub => i32_sub(ctx), Operator::I32Sub => i32_sub(ctx),
Operator::I32And => i32_and(ctx), Operator::I32And => i32_and(ctx),

16
src/tests.rs

@ -320,11 +320,11 @@ fn spec_loop() {
let code = r#" let code = r#"
(module (module
(func (func
(call $assert-return (call $as-binary-operand) (i32.const 12)) (call $assert-eq (call $as-binary-operand) (i32.const 12))
(call $assert-return (call $break-bare) (i32.const 19)) (call $assert-eq (call $break-bare) (i32.const 19))
(call $assert-return (call $break-value) (i32.const 18)) (call $assert-eq (call $break-value) (i32.const 18))
(call $assert-return (call $break-repeated) (i32.const 18)) (call $assert-eq (call $break-repeated) (i32.const 18))
(call $assert-return (call $break-inner) (i32.const 0x7)) (call $assert-eq (call $break-inner) (i32.const 0x7))
) )
(func $dummy) (func $dummy)
(func $as-binary-operand (result i32) (func $as-binary-operand (result i32)
@ -363,8 +363,10 @@ fn spec_loop() {
(set_local 0 (i32.add (get_local 0) (block (result i32) (loop (result i32) (block (result i32) (loop (result i32) (br 1 (i32.const 0x4)))))))) (set_local 0 (i32.add (get_local 0) (block (result i32) (loop (result i32) (block (result i32) (loop (result i32) (br 1 (i32.const 0x4))))))))
(get_local 0) (get_local 0)
) )
(func $assert-return (param i32) (param i32) (func $assert-eq (param i32) (param i32)
(if (i32.eq (get_local 0) (get_local 1)) (then) (else (unreachable))) (if (i32.ne (get_local 0) (get_local 1))
(unreachable)
)
) )
) )
"#; "#;

Loading…
Cancel
Save