Browse Source

Add ability to call CLIF functions with arbitrary arguments in filetests

This resolves the work started in https://github.com/bytecodealliance/cranelift/pull/1231 and https://github.com/bytecodealliance/wasmtime/pull/1436. Cranelift filetests currently have the ability to run CLIF functions with a signature like `() -> b*` and check that the result is true under the `test run` directive. This PR adds the ability to call functions with arbitrary arguments and non-boolean returns and either print the result or check against a list of expected results:
 - `run` commands look like `; run: %add(2, 2) == 4` or `; run: %add(2, 2) != 5` and verify that the executed CLIF function returns the expected value
 - `print` commands look like `; print: %add(2, 2)` and print the result of the function to stdout

To make this work, this PR compiles a single Cranelift `Function` into a `CompiledFunction` using a `SingleFunctionCompiler`. Because we will not know the signature of the function until runtime, we use a `Trampoline` to place the values in the appropriate location for the calling convention; this should look a lot like what @alexcrichton is doing with `VMTrampoline` in wasmtime (see 3b7cb6ee64/crates/api/src/func.rs (L510-L526,) 3b7cb6ee64/crates/jit/src/compiler.rs (L260)). To avoid re-compiling `Trampoline`s for the same function signatures, `Trampoline`s are cached in the `SingleFunctionCompiler`.
pull/1643/head
Andrew Brown 5 years ago
parent
commit
38dff29179
  1. 2
      Cargo.lock
  2. 4
      cranelift/filetests/Cargo.toml
  3. 449
      cranelift/filetests/src/function_runner.rs
  4. 2
      cranelift/filetests/src/lib.rs
  5. 19
      cranelift/filetests/src/test_run.rs
  6. 22
      cranelift/reader/src/parser.rs
  7. 79
      cranelift/reader/src/run_command.rs
  8. 18
      cranelift/src/run.rs

2
Cargo.lock

@ -409,6 +409,7 @@ version = "0.63.0"
dependencies = [ dependencies = [
"byteorder", "byteorder",
"cranelift-codegen", "cranelift-codegen",
"cranelift-frontend",
"cranelift-native", "cranelift-native",
"cranelift-preopt", "cranelift-preopt",
"cranelift-reader", "cranelift-reader",
@ -420,6 +421,7 @@ dependencies = [
"num_cpus", "num_cpus",
"region", "region",
"target-lexicon", "target-lexicon",
"thiserror",
] ]
[[package]] [[package]]

4
cranelift/filetests/Cargo.toml

@ -11,9 +11,11 @@ edition = "2018"
[dependencies] [dependencies]
cranelift-codegen = { path = "../codegen", version = "0.63.0", features = ["testing_hooks"] } cranelift-codegen = { path = "../codegen", version = "0.63.0", features = ["testing_hooks"] }
cranelift-frontend = { path = "../frontend", version = "0.63.0" }
cranelift-native = { path = "../native", version = "0.63.0" } cranelift-native = { path = "../native", version = "0.63.0" }
cranelift-reader = { path = "../reader", version = "0.63.0" } cranelift-reader = { path = "../reader", version = "0.63.0" }
cranelift-preopt = { path = "../preopt", version = "0.63.0" } cranelift-preopt = { path = "../preopt", version = "0.63.0" }
byteorder = { version = "1.3.2", default-features = false }
file-per-thread-logger = "0.1.2" file-per-thread-logger = "0.1.2"
filecheck = "0.5.0" filecheck = "0.5.0"
gimli = { version = "0.20.0", default-features = false, features = ["read"] } gimli = { version = "0.20.0", default-features = false, features = ["read"] }
@ -21,5 +23,5 @@ log = "0.4.6"
memmap = "0.7.0" memmap = "0.7.0"
num_cpus = "1.8.0" num_cpus = "1.8.0"
region = "2.1.2" region = "2.1.2"
byteorder = { version = "1.3.2", default-features = false }
target-lexicon = "0.10" target-lexicon = "0.10"
thiserror = "1.0.15"

449
cranelift/filetests/src/function_runner.rs

@ -1,96 +1,392 @@
use core::mem; //! Provides functionality for compiling and running CLIF IR for `run` tests.
use core::{mem, ptr};
use cranelift_codegen::binemit::{NullRelocSink, NullStackmapSink, NullTrapSink}; use cranelift_codegen::binemit::{NullRelocSink, NullStackmapSink, NullTrapSink};
use cranelift_codegen::ir::Function; use cranelift_codegen::ir::{condcodes::IntCC, Function, InstBuilder, Signature, Type};
use cranelift_codegen::isa::TargetIsa; use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::{settings, Context}; use cranelift_codegen::{ir, settings, CodegenError, Context};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_native::builder as host_isa_builder; use cranelift_native::builder as host_isa_builder;
use memmap::MmapMut; use cranelift_reader::DataValue;
use log::trace;
use memmap::{Mmap, MmapMut};
use std::cmp::max;
use std::collections::HashMap;
use thiserror::Error;
/// Run a function on a host /// Compile a single function.
pub struct FunctionRunner { ///
function: Function, /// Several Cranelift functions need the ability to run Cranelift IR (e.g. `test_run`); this
/// [SingleFunctionCompiler] provides a way for compiling Cranelift [Function]s to
/// [CompiledFunction]s and subsequently calling them through the use of a [Trampoline]. As its
/// name indicates, this compiler is limited: any functionality that requires knowledge of things
/// outside the [Function] will likely not work (e.g. global values, calls). For an example of this
/// "outside-of-function" functionality, see `cranelift_simplejit::backend::SimpleJITBackend`.
///
/// ```
/// use cranelift_filetests::SingleFunctionCompiler;
/// use cranelift_reader::parse_functions;
///
/// let code = "test run \n function %add(i32, i32) -> i32 { block0(v0:i32, v1:i32): v2 = iadd v0, v1 return v2 }".into();
/// let func = parse_functions(code).unwrap().into_iter().nth(0).unwrap();
/// let mut compiler = SingleFunctionCompiler::with_default_host_isa();
/// let compiled_func = compiler.compile(func).unwrap();
/// println!("Address of compiled function: {:p}", compiled_func.as_ptr());
/// ```
pub struct SingleFunctionCompiler {
isa: Box<dyn TargetIsa>, isa: Box<dyn TargetIsa>,
trampolines: HashMap<Signature, Trampoline>,
} }
impl FunctionRunner { impl SingleFunctionCompiler {
/// Build a function runner from a function and the ISA to run on (must be the host machine's ISA) /// Build a [SingleFunctionCompiler] from a [TargetIsa]. For functions to be runnable on the
pub fn new(function: Function, isa: Box<dyn TargetIsa>) -> Self { /// host machine, this [TargetISA] must match the host machine's ISA (see [with_host_isa]).
Self { function, isa } pub fn new(isa: Box<dyn TargetIsa>) -> Self {
let trampolines = HashMap::new();
Self { isa, trampolines }
} }
/// Build a function runner using the host machine's ISA and the passed flags /// Build a [SingleFunctionCompiler] using the host machine's ISA and the passed flags.
pub fn with_host_isa(function: Function, flags: settings::Flags) -> Self { pub fn with_host_isa(flags: settings::Flags) -> Self {
let builder = host_isa_builder().expect("Unable to build a TargetIsa for the current host"); let builder = host_isa_builder().expect("Unable to build a TargetIsa for the current host");
let isa = builder.finish(flags); let isa = builder.finish(flags);
Self::new(function, isa) Self::new(isa)
} }
/// Build a function runner using the host machine's ISA and the default flags for this ISA /// Build a [SingleFunctionCompiler] using the host machine's ISA and the default flags for this
pub fn with_default_host_isa(function: Function) -> Self { /// ISA.
pub fn with_default_host_isa() -> Self {
let flags = settings::Flags::new(settings::builder()); let flags = settings::Flags::new(settings::builder());
Self::with_host_isa(function, flags) Self::with_host_isa(flags)
}
/// Compile and execute a single function, expecting a boolean to be returned; a 'true' value is
/// interpreted as a successful test execution and mapped to Ok whereas a 'false' value is
/// interpreted as a failed test and mapped to Err.
pub fn run(&self) -> Result<(), String> {
let func = self.function.clone();
if !(func.signature.params.is_empty()
&& func.signature.returns.len() == 1
&& func.signature.returns.first().unwrap().value_type.is_bool())
{
return Err(String::from(
"Functions must have a signature like: () -> boolean",
));
} }
if func.signature.call_conv != self.isa.default_call_conv() { /// Compile the passed [Function] to a [CompiledFunction]. This function will:
return Err(String::from( /// - check that the default ISA calling convention is used (to ensure it can be called)
"Functions only run on the host's default calling convention; remove the specified calling convention in the function signature to use the host's default.", /// - compile the [Function]
)); /// - compile a [Trampoline] for the [Function]'s signature (or used a cached [Trampoline];
/// this makes it possible to call functions when the signature is not known until runtime.
pub fn compile(&mut self, function: Function) -> Result<CompiledFunction, CompilationError> {
let signature = function.signature.clone();
if signature.call_conv != self.isa.default_call_conv() {
return Err(CompilationError::InvalidTargetIsa);
}
// Compile the function itself.
let code_page = compile(function, self.isa.as_ref())?;
// Compile the trampoline to call it, if necessary (it may be cached).
let isa = self.isa.as_ref();
let trampoline = self
.trampolines
.entry(signature.clone())
.or_insert_with(|| {
let ir = make_trampoline(&signature, isa);
let code = compile(ir, isa).expect("failed to compile trampoline");
Trampoline::new(code)
});
Ok(CompiledFunction::new(code_page, signature, trampoline))
}
}
#[derive(Error, Debug)]
pub enum CompilationError {
#[error("Cross-compilation not currently supported; use the host's default calling convention \
or remove the specified calling convention in the function signature to use the host's default.")]
InvalidTargetIsa,
#[error("Cranelift codegen error")]
CodegenError(#[from] CodegenError),
#[error("Memory mapping error")]
IoError(#[from] std::io::Error),
}
/// Contains the compiled code to move memory-allocated [DataValue]s to the correct location (e.g.
/// register, stack) dictated by the calling convention before calling a [CompiledFunction]. Without
/// this, it would be quite difficult to correctly place [DataValue]s since both the calling
/// convention and function signature are not known until runtime. See [make_trampoline] for the
/// Cranelift IR used to build this.
pub struct Trampoline {
page: Mmap,
}
impl Trampoline {
/// Build a new [Trampoline].
pub fn new(page: Mmap) -> Self {
Self { page }
}
/// Return a pointer to the compiled code.
fn as_ptr(&self) -> *const u8 {
self.page.as_ptr()
}
}
/// Container for the compiled code of a [Function]. This wrapper allows users to call the compiled
/// function through the use of a [Trampoline].
///
/// ```
/// use cranelift_filetests::SingleFunctionCompiler;
/// use cranelift_reader::{parse_functions, DataValue};
///
/// let code = "test run \n function %add(i32, i32) -> i32 { block0(v0:i32, v1:i32): v2 = iadd v0, v1 return v2 }".into();
/// let func = parse_functions(code).unwrap().into_iter().nth(0).unwrap();
/// let mut compiler = SingleFunctionCompiler::with_default_host_isa();
/// let compiled_func = compiler.compile(func).unwrap();
///
/// let returned = compiled_func.call(&vec![DataValue::I32(2), DataValue::I32(40)]);
/// assert_eq!(vec![DataValue::I32(42)], returned);
/// ```
pub struct CompiledFunction<'a> {
page: Mmap,
signature: Signature,
trampoline: &'a Trampoline,
}
impl<'a> CompiledFunction<'a> {
/// Build a new [CompiledFunction].
pub fn new(page: Mmap, signature: Signature, trampoline: &'a Trampoline) -> Self {
Self {
page,
signature,
trampoline,
}
}
/// Return a pointer to the compiled code.
pub fn as_ptr(&self) -> *const u8 {
self.page.as_ptr()
}
/// Call the [CompiledFunction], passing in [DataValue]s using a compiled [Trampoline].
pub fn call(&self, arguments: &[DataValue]) -> Vec<DataValue> {
let mut values = UnboxedValues::make_arguments(arguments, &self.signature);
let arguments_address = values.as_mut_ptr();
let function_address = self.as_ptr();
let callable_trampoline: fn(*const u8, *mut u128) -> () =
unsafe { mem::transmute(self.trampoline.as_ptr()) };
callable_trampoline(function_address, arguments_address);
values.collect_returns(&self.signature)
}
}
/// A container for laying out the [ValueData]s in memory in a way that the [Trampoline] can
/// understand.
struct UnboxedValues(Vec<u128>);
impl UnboxedValues {
/// The size in bytes of each slot location in the allocated [DataValue]s. Though [DataValue]s
/// could be smaller than 16 bytes (e.g. `I16`), this simplifies the creation of the [DataValue]
/// array and could be used to align the slots to the largest used [DataValue] (i.e. 128-bit
/// vectors).
const SLOT_SIZE: usize = 16;
/// Build the arguments vector for passing the [DataValue]s into the [Trampoline]. The size of
/// `u128` used here must match [Trampoline::SLOT_SIZE].
pub fn make_arguments(arguments: &[DataValue], signature: &ir::Signature) -> Self {
assert_eq!(arguments.len(), signature.params.len());
let mut values_vec = vec![0; max(signature.params.len(), signature.returns.len())];
// Store the argument values into `values_vec`.
for ((arg, slot), param) in arguments.iter().zip(&mut values_vec).zip(&signature.params) {
assert_eq!(
arg.ty(),
param.value_type,
"argument type mismatch: {} != {}",
arg.ty(),
param.value_type
);
unsafe {
Self::write_value_to(arg, slot);
}
}
Self(values_vec)
}
/// Return a pointer to the underlying memory for passing to the trampoline.
pub fn as_mut_ptr(&mut self) -> *mut u128 {
self.0.as_mut_ptr()
}
/// Collect the returned [DataValue]s into a [Vec]. The size of `u128` used here must match
/// [Trampoline::SLOT_SIZE].
pub fn collect_returns(&self, signature: &ir::Signature) -> Vec<DataValue> {
assert!(self.0.len() >= signature.returns.len());
let mut returns = Vec::with_capacity(signature.returns.len());
// Extract the returned values from this vector.
for (slot, param) in self.0.iter().zip(&signature.returns) {
let value = unsafe { Self::read_value_from(slot, param.value_type) };
returns.push(value);
} }
// set up the context returns
}
/// Write a [DataValue] to a memory location.
unsafe fn write_value_to(v: &DataValue, p: *mut u128) {
match v {
DataValue::B(b) => ptr::write(p as *mut bool, *b),
DataValue::I8(i) => ptr::write(p as *mut i8, *i),
DataValue::I16(i) => ptr::write(p as *mut i16, *i),
DataValue::I32(i) => ptr::write(p as *mut i32, *i),
DataValue::I64(i) => ptr::write(p as *mut i64, *i),
DataValue::F32(f) => ptr::write(p as *mut f32, *f),
DataValue::F64(f) => ptr::write(p as *mut f64, *f),
DataValue::V128(b) => ptr::write(p as *mut [u8; 16], *b),
}
}
/// Read a [DataValue] from a memory location using a given [Type].
unsafe fn read_value_from(p: *const u128, ty: Type) -> DataValue {
match ty {
ir::types::I8 => DataValue::I8(ptr::read(p as *const i8)),
ir::types::I16 => DataValue::I16(ptr::read(p as *const i16)),
ir::types::I32 => DataValue::I32(ptr::read(p as *const i32)),
ir::types::I64 => DataValue::I64(ptr::read(p as *const i64)),
ir::types::F32 => DataValue::F32(ptr::read(p as *const f32)),
ir::types::F64 => DataValue::F64(ptr::read(p as *const f64)),
_ if ty.is_bool() => DataValue::B(ptr::read(p as *const bool)),
_ if ty.is_vector() && ty.bytes() == 16 => {
DataValue::V128(ptr::read(p as *const [u8; 16]))
}
_ => unimplemented!(),
}
}
}
/// Compile a [Function] to its executable bytes in memory.
///
/// This currently returns a [Mmap], a type from an external crate, so we wrap this up before
/// exposing it in public APIs.
fn compile(function: Function, isa: &dyn TargetIsa) -> Result<Mmap, CompilationError> {
// Set up the context.
let mut context = Context::new(); let mut context = Context::new();
context.func = func; context.func = function;
// compile and encode the result to machine code // Compile and encode the result to machine code.
let relocs = &mut NullRelocSink {}; let relocs = &mut NullRelocSink {};
let traps = &mut NullTrapSink {}; let traps = &mut NullTrapSink {};
let stackmaps = &mut NullStackmapSink {}; let stackmaps = &mut NullStackmapSink {};
let code_info = context let code_info = context.compile(isa)?;
.compile(self.isa.as_ref()) let mut code_page = MmapMut::map_anon(code_info.total_size as usize)?;
.map_err(|e| e.to_string())?;
let mut code_page =
MmapMut::map_anon(code_info.total_size as usize).map_err(|e| e.to_string())?;
unsafe { unsafe {
context.emit_to_memory( context.emit_to_memory(isa, code_page.as_mut_ptr(), relocs, traps, stackmaps);
self.isa.as_ref(),
code_page.as_mut_ptr(),
relocs,
traps,
stackmaps,
);
}; };
let code_page = code_page.make_exec().map_err(|e| e.to_string())?; let code_page = code_page.make_exec()?;
let callable_fn: fn() -> bool = unsafe { mem::transmute(code_page.as_ptr()) }; trace!(
"Compiled function {} with signature {} at: {:p}",
context.func.name,
context.func.signature,
code_page.as_ptr()
);
Ok(code_page)
}
/// Build the Cranelift IR for moving the memory-allocated [DataValue]s to their correct location
/// (e.g. register, stack) prior to calling a [CompiledFunction]. The [Function] returned by
/// [make_trampoline] is compiled to a [Trampoline]. Note that this uses the [TargetIsa]'s default
/// calling convention so we must also check that the [CompiledFunction] has the same calling
/// convention (see [SingleFunctionCompiler::compile]).
fn make_trampoline(signature: &ir::Signature, isa: &dyn TargetIsa) -> Function {
// Create the trampoline signature: (callee_address: pointer, values_vec: pointer) -> ()
let pointer_type = isa.pointer_type();
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
wrapper_sig.params.push(ir::AbiParam::new(pointer_type)); // Add the `callee_address` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type)); // Add the `values_vec` parameter.
let mut func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
// execute // The trampoline has a single block filled with loads, one call to callee_address, and some loads.
if callable_fn() { let mut builder_context = FunctionBuilderContext::new();
Ok(()) let mut builder = FunctionBuilder::new(&mut func, &mut builder_context);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
// Extract the incoming SSA values.
let (callee_value, values_vec_ptr_val) = {
let params = builder.func.dfg.block_params(block0);
(params[0], params[1])
};
// Load the argument values out of `values_vec`.
let callee_args = signature
.params
.iter()
.enumerate()
.map(|(i, param)| {
// Calculate the type to load from memory, using integers for booleans (no encodings).
let ty = if param.value_type.is_bool() {
Type::int(max(param.value_type.bits(), 8)).expect(
"to be able to convert any boolean type to its equal-width integer type",
)
} else {
param.value_type
};
// Load the value.
let loaded = builder.ins().load(
ty,
ir::MemFlags::trusted(),
values_vec_ptr_val,
(i * UnboxedValues::SLOT_SIZE) as i32,
);
// For booleans, we want to type-convert the loaded integer into a boolean and ensure
// that we are using the architecture's canonical boolean representation (presumably
// comparison will emit this).
if param.value_type.is_bool() {
builder.ins().icmp_imm(IntCC::NotEqual, loaded, 0)
} else { } else {
Err(format!("Failed: {}", context.func.name.to_string())) loaded
} }
})
.collect::<Vec<_>>();
// Call the passed function.
let new_sig = builder.import_signature(signature.clone());
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
// Store the return values into `values_vec`.
let results = builder.func.dfg.inst_results(call).to_vec();
for ((i, value), param) in results.iter().enumerate().zip(&signature.returns) {
// Before storing return values, we convert booleans to their integer representation.
let value = if param.value_type.is_bool() {
let ty = Type::int(max(param.value_type.bits(), 8))
.expect("to be able to convert any boolean type to its equal-width integer type");
builder.ins().bint(ty, *value)
} else {
*value
};
// Store the value.
builder.ins().store(
ir::MemFlags::trusted(),
value,
values_vec_ptr_val,
(i * UnboxedValues::SLOT_SIZE) as i32,
);
} }
builder.ins().return_(&[]);
builder.finalize();
func
} }
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;
use cranelift_reader::{parse_test, ParseOptions}; use cranelift_reader::{parse_functions, parse_test, ParseOptions};
fn parse(code: &str) -> Function {
parse_functions(code).unwrap().into_iter().nth(0).unwrap()
}
#[test] #[test]
fn nop() { fn nop() {
@ -111,7 +407,42 @@ mod test {
let function = test_file.functions[0].0.clone(); let function = test_file.functions[0].0.clone();
// execute function // execute function
let runner = FunctionRunner::with_default_host_isa(function); let mut compiler = SingleFunctionCompiler::with_default_host_isa();
runner.run().unwrap() // will panic if execution fails let compiled_function = compiler.compile(function).unwrap();
let returned = compiled_function.call(&[]);
assert_eq!(returned, vec![DataValue::B(true)])
}
#[test]
fn trampolines() {
let function = parse(
"
function %test(f32, i8, i64x2, b1) -> f32x4, b64 {
block0(v0: f32, v1: i8, v2: i64x2, v3: b1):
v4 = vconst.f32x4 [0x0.1 0x0.2 0x0.3 0x0.4]
v5 = bconst.b64 true
return v4, v5
}",
);
let compiler = SingleFunctionCompiler::with_default_host_isa();
let trampoline = make_trampoline(&function.signature, compiler.isa.as_ref());
assert!(format!("{}", trampoline).ends_with(
"sig0 = (f32, i8, i64x2, b1) -> f32x4, b64 fast
block0(v0: i64, v1: i64):
v2 = load.f32 notrap aligned v1
v3 = load.i8 notrap aligned v1+16
v4 = load.i64x2 notrap aligned v1+32
v5 = load.i8 notrap aligned v1+48
v6 = icmp_imm ne v5, 0
v7, v8 = call_indirect sig0, v0(v2, v3, v4, v6)
store notrap aligned v7, v1
v9 = bint.i64 v8
store notrap aligned v9, v1+16
return
}
"
));
} }
} }

2
cranelift/filetests/src/lib.rs

@ -23,7 +23,7 @@
) )
)] )]
pub use crate::function_runner::FunctionRunner; pub use crate::function_runner::SingleFunctionCompiler;
use crate::runner::TestRunner; use crate::runner::TestRunner;
use cranelift_codegen::timing; use cranelift_codegen::timing;
use cranelift_reader::TestCommand; use cranelift_reader::TestCommand;

19
cranelift/filetests/src/test_run.rs

@ -2,7 +2,7 @@
//! //!
//! The `run` test command compiles each function on the host machine and executes it //! The `run` test command compiles each function on the host machine and executes it
use crate::function_runner::FunctionRunner; use crate::function_runner::SingleFunctionCompiler;
use crate::subtest::{Context, SubTest, SubtestResult}; use crate::subtest::{Context, SubTest, SubtestResult};
use cranelift_codegen::ir; use cranelift_codegen::ir;
use cranelift_reader::parse_run_command; use cranelift_reader::parse_run_command;
@ -36,11 +36,11 @@ impl SubTest for TestRun {
} }
fn run(&self, func: Cow<ir::Function>, context: &Context) -> SubtestResult<()> { fn run(&self, func: Cow<ir::Function>, context: &Context) -> SubtestResult<()> {
let mut compiler = SingleFunctionCompiler::with_host_isa(context.flags.clone());
for comment in context.details.comments.iter() { for comment in context.details.comments.iter() {
if comment.text.contains("run") { if let Some(command) =
let trimmed_comment = comment.text.trim_start_matches(|c| c == ' ' || c == ';'); parse_run_command(comment.text, &func.signature).map_err(|e| e.to_string())?
let command = parse_run_command(trimmed_comment, &func.signature) {
.map_err(|e| format!("{}", e))?;
trace!("Parsed run command: {}", command); trace!("Parsed run command: {}", command);
// If this test requests to run on a completely different // If this test requests to run on a completely different
@ -51,16 +51,15 @@ impl SubTest for TestRun {
return Ok(()); return Ok(());
} }
// TODO in following changes we will use the parsed command to alter FunctionRunner's behavior.
//
// Note that here we're also explicitly ignoring `context.isa`, // Note that here we're also explicitly ignoring `context.isa`,
// regardless of what's requested. We want to use the native // regardless of what's requested. We want to use the native
// host ISA no matter what here, so the ISA listed in the file // host ISA no matter what here, so the ISA listed in the file
// is only used as a filter to not run into situations like // is only used as a filter to not run into situations like
// running x86_64 code on aarch64 platforms. // running x86_64 code on aarch64 platforms.
let runner = let compiled_fn = compiler
FunctionRunner::with_host_isa(func.clone().into_owned(), context.flags.clone()); .compile(func.clone().into_owned())
runner.run()? .map_err(|e| e.to_string())?;
command.run(|args| compiled_fn.call(args))?;
} }
} }
Ok(()) Ok(())

22
cranelift/reader/src/parser.rs

@ -114,11 +114,25 @@ pub fn parse_test<'a>(text: &'a str, options: ParseOptions<'a>) -> ParseResult<T
}) })
} }
/// Parse the entire `text` as a run command. /// Parse a CLIF comment `text` as a run command.
pub fn parse_run_command<'a>(text: &str, signature: &Signature) -> ParseResult<RunCommand> { ///
/// Return:
/// - `Ok(None)` if the comment is not intended to be a `RunCommand` (i.e. does not start with `run`
/// or `print`
/// - `Ok(Some(command))` if the comment is intended as a `RunCommand` and can be parsed to one
/// - `Err` otherwise.
pub fn parse_run_command<'a>(text: &str, signature: &Signature) -> ParseResult<Option<RunCommand>> {
let _tt = timing::parse_text(); let _tt = timing::parse_text();
let mut parser = Parser::new(text); // We remove leading spaces and semi-colons for convenience here instead of at the call sites
parser.parse_run_command(signature) // since this function will be attempting to parse a RunCommand from a CLIF comment.
let trimmed_text = text.trim_start_matches(|c| c == ' ' || c == ';');
let mut parser = Parser::new(trimmed_text);
match parser.token() {
Some(Token::Identifier("run")) | Some(Token::Identifier("print")) => {
parser.parse_run_command(signature).map(|c| Some(c))
}
Some(_) | None => Ok(None),
}
} }
pub struct Parser<'a> { pub struct Parser<'a> {

79
cranelift/reader/src/run_command.rs

@ -7,8 +7,8 @@
//! - `; run: %fn(42, 4.2) == false`: this syntax specifies the parameters and return values. //! - `; run: %fn(42, 4.2) == false`: this syntax specifies the parameters and return values.
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64}; use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
use cranelift_codegen::ir::ConstantData; use cranelift_codegen::ir::{self, ConstantData, Type};
use std::fmt::{Display, Formatter, Result}; use std::fmt::{self, Display, Formatter};
/// A run command appearing in a test file. /// A run command appearing in a test file.
/// ///
@ -22,8 +22,37 @@ pub enum RunCommand {
Run(Invocation, Comparison, Vec<DataValue>), Run(Invocation, Comparison, Vec<DataValue>),
} }
impl RunCommand {
/// Run the [RunCommand]:
/// - for [RunCommand::Print], print the returned values from invoking the function.
/// - for [RunCommand::Run], compare the returned values from the invoked function and
/// return an `Err` with a descriptive string if the comparison fails.
pub fn run<F>(&self, invoke_fn: F) -> Result<(), String>
where
F: FnOnce(&[DataValue]) -> Vec<DataValue>,
{
match self {
RunCommand::Print(invoke) => {
let actual = invoke_fn(&invoke.args);
println!("{:?} -> {:?}", invoke, actual)
}
RunCommand::Run(invoke, compare, expected) => {
let actual = invoke_fn(&invoke.args);
let matched = match compare {
Comparison::Equals => *expected == actual,
Comparison::NotEquals => *expected != actual,
};
if !matched {
return Err(format!("Failed test: {:?}, actual: {:?}", self, actual));
}
}
}
Ok(())
}
}
impl Display for RunCommand { impl Display for RunCommand {
fn fmt(&self, f: &mut Formatter) -> Result { fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self { match self {
RunCommand::Print(invocation) => write!(f, "print: {}", invocation), RunCommand::Print(invocation) => write!(f, "print: {}", invocation),
RunCommand::Run(invocation, comparison, expected) => { RunCommand::Run(invocation, comparison, expected) => {
@ -58,7 +87,7 @@ impl Invocation {
} }
impl Display for Invocation { impl Display for Invocation {
fn fmt(&self, f: &mut Formatter<'_>) -> Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "%{}(", self.func)?; write!(f, "%{}(", self.func)?;
write_data_value_list(f, &self.args)?; write_data_value_list(f, &self.args)?;
write!(f, ")") write!(f, ")")
@ -82,6 +111,22 @@ pub enum DataValue {
V128([u8; 16]), V128([u8; 16]),
} }
impl DataValue {
/// Return the Cranelift IR [Type] for this [DataValue].
pub fn ty(&self) -> Type {
match self {
DataValue::B(_) => ir::types::B8,
DataValue::I8(_) => ir::types::I8,
DataValue::I16(_) => ir::types::I16,
DataValue::I32(_) => ir::types::I32,
DataValue::I64(_) => ir::types::I64,
DataValue::F32(_) => ir::types::F32,
DataValue::F64(_) => ir::types::F64,
DataValue::V128(_) => ir::types::I8X16,
}
}
}
/// Helper for creating [From] implementations for [DataValue] /// Helper for creating [From] implementations for [DataValue]
macro_rules! from_data { macro_rules! from_data {
( $ty:ty, $variant:ident ) => { ( $ty:ty, $variant:ident ) => {
@ -102,7 +147,7 @@ from_data!(f64, F64);
from_data!([u8; 16], V128); from_data!([u8; 16], V128);
impl Display for DataValue { impl Display for DataValue {
fn fmt(&self, f: &mut Formatter<'_>) -> Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self { match self {
DataValue::B(dv) => write!(f, "{}", dv), DataValue::B(dv) => write!(f, "{}", dv),
DataValue::I8(dv) => write!(f, "{}", dv), DataValue::I8(dv) => write!(f, "{}", dv),
@ -119,7 +164,7 @@ impl Display for DataValue {
} }
/// Helper function for displaying `Vec<DataValue>`. /// Helper function for displaying `Vec<DataValue>`.
fn write_data_value_list(f: &mut Formatter<'_>, list: &[DataValue]) -> Result { fn write_data_value_list(f: &mut Formatter<'_>, list: &[DataValue]) -> fmt::Result {
match list.len() { match list.len() {
0 => Ok(()), 0 => Ok(()),
1 => write!(f, "{}", list[0]), 1 => write!(f, "{}", list[0]),
@ -142,10 +187,30 @@ pub enum Comparison {
} }
impl Display for Comparison { impl Display for Comparison {
fn fmt(&self, f: &mut Formatter<'_>) -> Result { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self { match self {
Comparison::Equals => write!(f, "=="), Comparison::Equals => write!(f, "=="),
Comparison::NotEquals => write!(f, "!="), Comparison::NotEquals => write!(f, "!="),
} }
} }
} }
#[cfg(test)]
mod test {
use super::*;
use crate::parse_run_command;
use cranelift_codegen::ir::{types, AbiParam, Signature};
use cranelift_codegen::isa::CallConv;
#[test]
fn run_a_command() {
let mut signature = Signature::new(CallConv::Fast);
signature.returns.push(AbiParam::new(types::I32));
let command = parse_run_command(";; run: %return42() == 42 ", &signature)
.unwrap()
.unwrap();
assert!(command.run(|_| vec![DataValue::I32(42)]).is_ok());
assert!(command.run(|_| vec![DataValue::I32(43)]).is_err());
}
}

18
cranelift/src/run.rs

@ -2,9 +2,9 @@
use crate::utils::read_to_string; use crate::utils::read_to_string;
use cranelift_codegen::isa::{CallConv, TargetIsa}; use cranelift_codegen::isa::{CallConv, TargetIsa};
use cranelift_filetests::FunctionRunner; use cranelift_filetests::SingleFunctionCompiler;
use cranelift_native::builder as host_isa_builder; use cranelift_native::builder as host_isa_builder;
use cranelift_reader::{parse_test, Details, IsaSpec, ParseOptions}; use cranelift_reader::{parse_run_command, parse_test, Details, IsaSpec, ParseOptions};
use std::path::PathBuf; use std::path::PathBuf;
use target_lexicon::Triple; use target_lexicon::Triple;
use walkdir::WalkDir; use walkdir::WalkDir;
@ -90,12 +90,16 @@ fn run_file_contents(file_contents: String) -> Result<(), String> {
..ParseOptions::default() ..ParseOptions::default()
}; };
let test_file = parse_test(&file_contents, options).map_err(|e| e.to_string())?; let test_file = parse_test(&file_contents, options).map_err(|e| e.to_string())?;
for (func, Details { comments, .. }) in test_file.functions {
if comments.iter().any(|c| c.text.contains("run")) {
// TODO in following changes we will parse this comment to alter the FunctionRunner's behavior.
let isa = create_target_isa(&test_file.isa_spec)?; let isa = create_target_isa(&test_file.isa_spec)?;
// TODO the following no longer makes sense; use FunctionRunner::with_host_isa(...) instead let mut compiler = SingleFunctionCompiler::new(isa);
FunctionRunner::new(func, isa).run()? for (func, Details { comments, .. }) in test_file.functions {
for comment in comments {
if let Some(command) =
parse_run_command(comment.text, &func.signature).map_err(|e| e.to_string())?
{
let compiled_fn = compiler.compile(func.clone()).map_err(|e| e.to_string())?;
command.run(|args| compiled_fn.call(args))?;
}
} }
} }
Ok(()) Ok(())

Loading…
Cancel
Save