Browse Source

Add meta definition for bitcast.

This instruction uses two type variables: input and output. Make sure that our
parser can handle it. The output type variable annotation is mandatory.

Add a ValueTypeSet::example() method which is used to provide better diagnostics
for a missing type variable.
pull/3/head
Jakob Stoklund Olesen 8 years ago
parent
commit
4a929f5e41
  1. 9
      docs/langref.rst
  2. 25
      meta/cretonne/base.py
  3. 69
      src/libcretonne/instructions.rs
  4. 5
      src/libreader/parser.rs
  5. 8
      tests/parser/tiny.cton
  6. 6
      tests/parser/tiny.cton.ref

9
docs/langref.rst

@ -817,14 +817,7 @@ represented as a floating point number.
Conversion operations
---------------------
.. inst:: a = bitcast x
Reinterpret the bits in ``x`` as a different type.
The input and output types must be storable to memory and of the same size.
A bitcast is equivalent to storing one type and loading the other type from
the same address.
.. autoinst:: bitcast
.. inst:: a = itrunc x
.. inst:: a = uext x
.. inst:: a = sext x

25
meta/cretonne/base.py

@ -761,4 +761,29 @@ nearest = Instruction(
""",
ins=x, outs=a)
#
# Conversions
#
Mem = TypeVar(
'Mem', 'Any type that can be stored in memory',
ints=True, floats=True, simd=True)
MemTo = TypeVar(
'MemTo', 'Any type that can be stored in memory',
ints=True, floats=True, simd=True)
x = Operand('x', Mem)
a = Operand('a', MemTo, 'Bits of `x` reinterpreted')
bitcast = Instruction(
'bitcast', r"""
Reinterpret the bits in `x` as a different type.
The input and output types must be storable to memory and of the same
size. A bitcast is equivalent to storing one type and loading the other
type from the same address.
""",
ins=x, outs=a)
instructions.close()

69
src/libcretonne/instructions.rs

@ -432,6 +432,30 @@ impl ValueTypeSet {
};
allowed && self.is_base_type(typ.lane_type())
}
/// Get an example member of this type set.
///
/// This is used for error messages to avoid suggesting invalid types.
pub fn example(&self) -> Type {
if self.base != types::VOID {
return self.base;
}
let t = if self.all_ints {
types::I32
} else if self.all_floats {
types::F32
} else if self.allow_scalars {
types::B1
} else {
types::B32
};
if self.allow_scalars {
t
} else {
t.by(4).unwrap()
}
}
}
/// Operand constraints. This describes the value type constraints on a single `Value` operand.
@ -506,4 +530,49 @@ mod tests {
// that?
assert_eq!(mem::size_of::<InstructionData>(), 16);
}
#[test]
fn value_set() {
use types::*;
let vts = ValueTypeSet {
allow_scalars: true,
allow_simd: true,
base: VOID,
all_ints: true,
all_floats: false,
all_bools: true,
};
assert_eq!(vts.example().to_string(), "i32");
let vts = ValueTypeSet {
allow_scalars: true,
allow_simd: true,
base: VOID,
all_ints: false,
all_floats: true,
all_bools: true,
};
assert_eq!(vts.example().to_string(), "f32");
let vts = ValueTypeSet {
allow_scalars: false,
allow_simd: true,
base: VOID,
all_ints: false,
all_floats: true,
all_bools: true,
};
assert_eq!(vts.example().to_string(), "f32x4");
let vts = ValueTypeSet {
allow_scalars: false,
allow_simd: true,
base: VOID,
all_ints: false,
all_floats: false,
all_bools: true,
};
assert_eq!(vts.example().to_string(), "b32x4");
}
}

5
src/libreader/parser.rs

@ -651,7 +651,10 @@ impl<'a> Parser<'a> {
} else if constraints.is_polymorphic() {
// This opcode does not support type inference, so the explicit type variable
// is required.
return err!(self.loc, "type variable required for polymorphic opcode");
return err!(self.loc,
"type variable required for polymorphic opcode, e.g. '{}.{}'",
opcode,
constraints.ctrl_typeset().unwrap().example());
} else {
// This is a non-polymorphic opcode. No typevar needed.
VOID

8
tests/parser/tiny.cton

@ -42,3 +42,11 @@ ebb0(vx0: f32, vx1: f32):
v1 = fcmp uno, vx0, vx1
v2 = fcmp lt, vx0, vx1
}
; The bitcast instruction has two type variables: The controlling type variable
; controls the outout type, and the input type is a free variable.
function bitcast(i32, f32) {
ebb0(vx0: i32, vx1: f32):
v0 = bitcast.i8x4 vx0
v1 = bitcast.i32 vx1
}

6
tests/parser/tiny.cton.ref

@ -35,3 +35,9 @@ ebb0(vx0: f32, vx1: f32):
v1 = fcmp uno, vx0, vx1
v2 = fcmp lt, vx0, vx1
}
function bitcast(i32, f32) {
ebb0(vx0: i32, vx1: f32):
v0 = bitcast.i8x4 vx0
v1 = bitcast.i32 vx1
}

Loading…
Cancel
Save