|
|
@ -1763,12 +1763,204 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>( |
|
|
|
let is_min = op == Opcode::Fmin; |
|
|
|
let output_ty = ty.unwrap(); |
|
|
|
ctx.emit(Inst::gen_move(dst, rhs, output_ty)); |
|
|
|
let op_size = match output_ty { |
|
|
|
types::F32 => OperandSize::Size32, |
|
|
|
types::F64 => OperandSize::Size64, |
|
|
|
_ => panic!("unexpected type {:?} for fmin/fmax", output_ty), |
|
|
|
}; |
|
|
|
ctx.emit(Inst::xmm_min_max_seq(op_size, is_min, lhs, dst)); |
|
|
|
if !output_ty.is_vector() { |
|
|
|
let op_size = match output_ty { |
|
|
|
types::F32 => OperandSize::Size32, |
|
|
|
types::F64 => OperandSize::Size64, |
|
|
|
_ => panic!("unexpected type {:?} for fmin/fmax", output_ty), |
|
|
|
}; |
|
|
|
ctx.emit(Inst::xmm_min_max_seq(op_size, is_min, lhs, dst)); |
|
|
|
} else { |
|
|
|
// X64's implementation of floating point min and floating point max does not
|
|
|
|
// propagate NaNs and +0's in a way that is friendly to the SIMD spec. For the
|
|
|
|
// scalar approach we use jumps to handle cases where NaN and +0 propagation is
|
|
|
|
// not consistent with what is needed. However for packed floating point min and
|
|
|
|
// floating point max we implement a different approach to avoid the sequence
|
|
|
|
// of jumps that would be required on a per lane basis. Because we do not need to
|
|
|
|
// lower labels and jumps but do need ctx for creating temporaries we implement
|
|
|
|
// the lowering here in lower.rs instead of emit.rs as is done in the case for scalars.
|
|
|
|
// The outline of approach is as follows:
|
|
|
|
//
|
|
|
|
// First we preform the Min/Max in both directions. This is because in the
|
|
|
|
// case of an operand's lane containing a NaN or in the case of the lanes of the
|
|
|
|
// two operands containing 0 but with mismatched signs, x64 will return the second
|
|
|
|
// operand regardless of its contents. So in order to make sure we capture NaNs and
|
|
|
|
// normalize NaNs and 0 values we capture the operation in both directions and merge the
|
|
|
|
// results. Then we normalize the results through operations that create a mask for the
|
|
|
|
// lanes containing NaNs, we use that mask to adjust NaNs to quite NaNs and normalize
|
|
|
|
// 0s.
|
|
|
|
//
|
|
|
|
// The following sequence is generated for min:
|
|
|
|
//
|
|
|
|
// movap{s,d} %lhs, %tmp
|
|
|
|
// minp{s,d} %dst, %tmp
|
|
|
|
// minp,{s,d} %lhs, %dst
|
|
|
|
// orp{s,d} %dst, %tmp
|
|
|
|
// cmpp{s,d} %tmp, %dst, $3
|
|
|
|
// orps{s,d} %dst, %tmp
|
|
|
|
// psrl{s,d} {$10, $13}, %dst
|
|
|
|
// andnp{s,d} %tmp, %dst
|
|
|
|
//
|
|
|
|
// and for max the sequence is:
|
|
|
|
//
|
|
|
|
// movap{s,d} %lhs, %tmp
|
|
|
|
// minp{s,d} %dst, %tmp
|
|
|
|
// minp,{s,d} %lhs, %dst
|
|
|
|
// xorp{s,d} %tmp, %dst
|
|
|
|
// orp{s,d} %dst, %tmp
|
|
|
|
// subp{s,d} %dst, %tmp
|
|
|
|
// cmpp{s,d} %tmp, %dst, $3
|
|
|
|
// psrl{s,d} {$10, $13}, %dst
|
|
|
|
// andnp{s,d} %tmp, %dst
|
|
|
|
|
|
|
|
if is_min { |
|
|
|
let (mov_op, min_op, or_op, cmp_op, shift_op, shift_by, andn_op) = |
|
|
|
match output_ty { |
|
|
|
types::F32X4 => ( |
|
|
|
SseOpcode::Movaps, |
|
|
|
SseOpcode::Minps, |
|
|
|
SseOpcode::Orps, |
|
|
|
SseOpcode::Cmpps, |
|
|
|
SseOpcode::Psrld, |
|
|
|
10, |
|
|
|
SseOpcode::Andnps, |
|
|
|
), |
|
|
|
types::F64X2 => ( |
|
|
|
SseOpcode::Movapd, |
|
|
|
SseOpcode::Minpd, |
|
|
|
SseOpcode::Orpd, |
|
|
|
SseOpcode::Cmppd, |
|
|
|
SseOpcode::Psrlq, |
|
|
|
13, |
|
|
|
SseOpcode::Andnpd, |
|
|
|
), |
|
|
|
_ => unimplemented!("unsupported op type {:?}", output_ty), |
|
|
|
}; |
|
|
|
|
|
|
|
// Copy lhs into tmp
|
|
|
|
let tmp_xmm1 = ctx.alloc_tmp(RegClass::V128, output_ty); |
|
|
|
ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(lhs), tmp_xmm1, None)); |
|
|
|
|
|
|
|
// Perform min in reverse direction
|
|
|
|
ctx.emit(Inst::xmm_rm_r(min_op, RegMem::from(dst), tmp_xmm1)); |
|
|
|
|
|
|
|
// Perform min in original direction
|
|
|
|
ctx.emit(Inst::xmm_rm_r(min_op, RegMem::reg(lhs), dst)); |
|
|
|
|
|
|
|
// X64 handles propagation of -0's and Nans differently between left and right
|
|
|
|
// operands. After doing the min in both directions, this OR will
|
|
|
|
// guarrentee capture of -0's and Nan in our tmp register
|
|
|
|
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::from(dst), tmp_xmm1)); |
|
|
|
|
|
|
|
// Compare unordered to create mask for lanes containing NaNs and then use
|
|
|
|
// that mask to saturate the NaN containing lanes in the tmp register with 1s.
|
|
|
|
// TODO: Would a check for NaN and then a jump be better here in the
|
|
|
|
// common case than continuing on to normalize NaNs that might not exist?
|
|
|
|
let cond = FcmpImm::from(FloatCC::Unordered); |
|
|
|
ctx.emit(Inst::xmm_rm_r_imm( |
|
|
|
cmp_op, |
|
|
|
RegMem::reg(tmp_xmm1.to_reg()), |
|
|
|
dst, |
|
|
|
cond.encode(), |
|
|
|
false, |
|
|
|
)); |
|
|
|
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(dst.to_reg()), tmp_xmm1)); |
|
|
|
|
|
|
|
// The dst register holds a mask for lanes containing NaNs.
|
|
|
|
// We take that mask and shift in preparation for creating a different mask
|
|
|
|
// to normalize NaNs (create a quite NaN) by zeroing out the appropriate
|
|
|
|
// number of least signficant bits. We shift right each lane by 10 bits
|
|
|
|
// (1 sign + 8 exp. + 1 MSB sig.) for F32X4 and by 13 bits (1 sign +
|
|
|
|
// 11 exp. + 1 MSB sig.) for F64X2.
|
|
|
|
ctx.emit(Inst::xmm_rmi_reg(shift_op, RegMemImm::imm(shift_by), dst)); |
|
|
|
|
|
|
|
// Finally we do a nand with the tmp register to produce the final results
|
|
|
|
// in the dst.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(andn_op, RegMem::reg(tmp_xmm1.to_reg()), dst)); |
|
|
|
} else { |
|
|
|
let ( |
|
|
|
mov_op, |
|
|
|
max_op, |
|
|
|
xor_op, |
|
|
|
or_op, |
|
|
|
sub_op, |
|
|
|
cmp_op, |
|
|
|
shift_op, |
|
|
|
shift_by, |
|
|
|
andn_op, |
|
|
|
) = match output_ty { |
|
|
|
types::F32X4 => ( |
|
|
|
SseOpcode::Movaps, |
|
|
|
SseOpcode::Maxps, |
|
|
|
SseOpcode::Xorps, |
|
|
|
SseOpcode::Orps, |
|
|
|
SseOpcode::Subps, |
|
|
|
SseOpcode::Cmpps, |
|
|
|
SseOpcode::Psrld, |
|
|
|
10, |
|
|
|
SseOpcode::Andnps, |
|
|
|
), |
|
|
|
types::F64X2 => ( |
|
|
|
SseOpcode::Movapd, |
|
|
|
SseOpcode::Maxpd, |
|
|
|
SseOpcode::Xorpd, |
|
|
|
SseOpcode::Orpd, |
|
|
|
SseOpcode::Subpd, |
|
|
|
SseOpcode::Cmppd, |
|
|
|
SseOpcode::Psrlq, |
|
|
|
13, |
|
|
|
SseOpcode::Andnpd, |
|
|
|
), |
|
|
|
_ => unimplemented!("unsupported op type {:?}", output_ty), |
|
|
|
}; |
|
|
|
|
|
|
|
// Copy lhs into tmp.
|
|
|
|
let tmp_xmm1 = ctx.alloc_tmp(RegClass::V128, types::F32); |
|
|
|
ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(lhs), tmp_xmm1, None)); |
|
|
|
|
|
|
|
// Perform max in reverse direction.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(max_op, RegMem::reg(dst.to_reg()), tmp_xmm1)); |
|
|
|
|
|
|
|
// Perform max in original direction.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(max_op, RegMem::reg(lhs), dst)); |
|
|
|
|
|
|
|
// Get the difference between the two results and store in tmp.
|
|
|
|
// Max uses a different approach than min to account for potential
|
|
|
|
// discrepancies with plus/minus 0.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(xor_op, RegMem::reg(tmp_xmm1.to_reg()), dst)); |
|
|
|
|
|
|
|
// X64 handles propagation of -0's and Nans differently between left and right
|
|
|
|
// operands. After doing the max in both directions, this OR will
|
|
|
|
// guarentee capture of 0's and Nan in our tmp register.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(dst.to_reg()), tmp_xmm1)); |
|
|
|
|
|
|
|
// Capture NaNs and sign discrepancies.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(sub_op, RegMem::reg(dst.to_reg()), tmp_xmm1)); |
|
|
|
|
|
|
|
// Compare unordered to create mask for lanes containing NaNs and then use
|
|
|
|
// that mask to saturate the NaN containing lanes in the tmp register with 1s.
|
|
|
|
let cond = FcmpImm::from(FloatCC::Unordered); |
|
|
|
ctx.emit(Inst::xmm_rm_r_imm( |
|
|
|
cmp_op, |
|
|
|
RegMem::reg(tmp_xmm1.to_reg()), |
|
|
|
dst, |
|
|
|
cond.encode(), |
|
|
|
false, |
|
|
|
)); |
|
|
|
|
|
|
|
// The dst register holds a mask for lanes containing NaNs.
|
|
|
|
// We take that mask and shift in preparation for creating a different mask
|
|
|
|
// to normalize NaNs (create a quite NaN) by zeroing out the appropriate
|
|
|
|
// number of least signficant bits. We shift right each lane by 10 bits
|
|
|
|
// (1 sign + 8 exp. + 1 MSB sig.) for F32X4 and by 13 bits (1 sign +
|
|
|
|
// 11 exp. + 1 MSB sig.) for F64X2.
|
|
|
|
ctx.emit(Inst::xmm_rmi_reg(shift_op, RegMemImm::imm(shift_by), dst)); |
|
|
|
|
|
|
|
// Finally we do a nand with the tmp register to produce the final results
|
|
|
|
// in the dst.
|
|
|
|
ctx.emit(Inst::xmm_rm_r(andn_op, RegMem::reg(tmp_xmm1.to_reg()), dst)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
Opcode::Sqrt => { |
|
|
|