Browse Source

Adds packed floating point min/max for X64 for the new backend

Allows for simd_f32x4 and simd_f64x2 spec tests
pull/2261/head
Johnnie Birch 4 years ago
parent
commit
7b4d173b90
  1. 2
      build.rs
  2. 204
      cranelift/codegen/src/isa/x64/lower.rs

2
build.rs

@ -192,8 +192,10 @@ fn experimental_x64_should_panic(testsuite: &str, testname: &str, strategy: &str
("simd", "simd_i32x4_arith2") => return false, ("simd", "simd_i32x4_arith2") => return false,
("simd", "simd_i32x4_cmp") => return false, ("simd", "simd_i32x4_cmp") => return false,
("simd", "simd_i64x2_arith") => return false, ("simd", "simd_i64x2_arith") => return false,
("simd", "simd_f32x4") => return false,
("simd", "simd_f32x4_arith") => return false, ("simd", "simd_f32x4_arith") => return false,
("simd", "simd_f32x4_cmp") => return false, ("simd", "simd_f32x4_cmp") => return false,
("simd", "simd_f64x2") => return false,
("simd", "simd_f64x2_arith") => return false, ("simd", "simd_f64x2_arith") => return false,
("simd", "simd_f64x2_cmp") => return false, ("simd", "simd_f64x2_cmp") => return false,
("simd", "simd_lane") => return false, ("simd", "simd_lane") => return false,

204
cranelift/codegen/src/isa/x64/lower.rs

@ -1763,12 +1763,204 @@ fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
let is_min = op == Opcode::Fmin; let is_min = op == Opcode::Fmin;
let output_ty = ty.unwrap(); let output_ty = ty.unwrap();
ctx.emit(Inst::gen_move(dst, rhs, output_ty)); ctx.emit(Inst::gen_move(dst, rhs, output_ty));
let op_size = match output_ty { if !output_ty.is_vector() {
types::F32 => OperandSize::Size32, let op_size = match output_ty {
types::F64 => OperandSize::Size64, types::F32 => OperandSize::Size32,
_ => panic!("unexpected type {:?} for fmin/fmax", output_ty), types::F64 => OperandSize::Size64,
}; _ => panic!("unexpected type {:?} for fmin/fmax", output_ty),
ctx.emit(Inst::xmm_min_max_seq(op_size, is_min, lhs, dst)); };
ctx.emit(Inst::xmm_min_max_seq(op_size, is_min, lhs, dst));
} else {
// X64's implementation of floating point min and floating point max does not
// propagate NaNs and +0's in a way that is friendly to the SIMD spec. For the
// scalar approach we use jumps to handle cases where NaN and +0 propagation is
// not consistent with what is needed. However for packed floating point min and
// floating point max we implement a different approach to avoid the sequence
// of jumps that would be required on a per lane basis. Because we do not need to
// lower labels and jumps but do need ctx for creating temporaries we implement
// the lowering here in lower.rs instead of emit.rs as is done in the case for scalars.
// The outline of approach is as follows:
//
// First we preform the Min/Max in both directions. This is because in the
// case of an operand's lane containing a NaN or in the case of the lanes of the
// two operands containing 0 but with mismatched signs, x64 will return the second
// operand regardless of its contents. So in order to make sure we capture NaNs and
// normalize NaNs and 0 values we capture the operation in both directions and merge the
// results. Then we normalize the results through operations that create a mask for the
// lanes containing NaNs, we use that mask to adjust NaNs to quite NaNs and normalize
// 0s.
//
// The following sequence is generated for min:
//
// movap{s,d} %lhs, %tmp
// minp{s,d} %dst, %tmp
// minp,{s,d} %lhs, %dst
// orp{s,d} %dst, %tmp
// cmpp{s,d} %tmp, %dst, $3
// orps{s,d} %dst, %tmp
// psrl{s,d} {$10, $13}, %dst
// andnp{s,d} %tmp, %dst
//
// and for max the sequence is:
//
// movap{s,d} %lhs, %tmp
// minp{s,d} %dst, %tmp
// minp,{s,d} %lhs, %dst
// xorp{s,d} %tmp, %dst
// orp{s,d} %dst, %tmp
// subp{s,d} %dst, %tmp
// cmpp{s,d} %tmp, %dst, $3
// psrl{s,d} {$10, $13}, %dst
// andnp{s,d} %tmp, %dst
if is_min {
let (mov_op, min_op, or_op, cmp_op, shift_op, shift_by, andn_op) =
match output_ty {
types::F32X4 => (
SseOpcode::Movaps,
SseOpcode::Minps,
SseOpcode::Orps,
SseOpcode::Cmpps,
SseOpcode::Psrld,
10,
SseOpcode::Andnps,
),
types::F64X2 => (
SseOpcode::Movapd,
SseOpcode::Minpd,
SseOpcode::Orpd,
SseOpcode::Cmppd,
SseOpcode::Psrlq,
13,
SseOpcode::Andnpd,
),
_ => unimplemented!("unsupported op type {:?}", output_ty),
};
// Copy lhs into tmp
let tmp_xmm1 = ctx.alloc_tmp(RegClass::V128, output_ty);
ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(lhs), tmp_xmm1, None));
// Perform min in reverse direction
ctx.emit(Inst::xmm_rm_r(min_op, RegMem::from(dst), tmp_xmm1));
// Perform min in original direction
ctx.emit(Inst::xmm_rm_r(min_op, RegMem::reg(lhs), dst));
// X64 handles propagation of -0's and Nans differently between left and right
// operands. After doing the min in both directions, this OR will
// guarrentee capture of -0's and Nan in our tmp register
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::from(dst), tmp_xmm1));
// Compare unordered to create mask for lanes containing NaNs and then use
// that mask to saturate the NaN containing lanes in the tmp register with 1s.
// TODO: Would a check for NaN and then a jump be better here in the
// common case than continuing on to normalize NaNs that might not exist?
let cond = FcmpImm::from(FloatCC::Unordered);
ctx.emit(Inst::xmm_rm_r_imm(
cmp_op,
RegMem::reg(tmp_xmm1.to_reg()),
dst,
cond.encode(),
false,
));
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(dst.to_reg()), tmp_xmm1));
// The dst register holds a mask for lanes containing NaNs.
// We take that mask and shift in preparation for creating a different mask
// to normalize NaNs (create a quite NaN) by zeroing out the appropriate
// number of least signficant bits. We shift right each lane by 10 bits
// (1 sign + 8 exp. + 1 MSB sig.) for F32X4 and by 13 bits (1 sign +
// 11 exp. + 1 MSB sig.) for F64X2.
ctx.emit(Inst::xmm_rmi_reg(shift_op, RegMemImm::imm(shift_by), dst));
// Finally we do a nand with the tmp register to produce the final results
// in the dst.
ctx.emit(Inst::xmm_rm_r(andn_op, RegMem::reg(tmp_xmm1.to_reg()), dst));
} else {
let (
mov_op,
max_op,
xor_op,
or_op,
sub_op,
cmp_op,
shift_op,
shift_by,
andn_op,
) = match output_ty {
types::F32X4 => (
SseOpcode::Movaps,
SseOpcode::Maxps,
SseOpcode::Xorps,
SseOpcode::Orps,
SseOpcode::Subps,
SseOpcode::Cmpps,
SseOpcode::Psrld,
10,
SseOpcode::Andnps,
),
types::F64X2 => (
SseOpcode::Movapd,
SseOpcode::Maxpd,
SseOpcode::Xorpd,
SseOpcode::Orpd,
SseOpcode::Subpd,
SseOpcode::Cmppd,
SseOpcode::Psrlq,
13,
SseOpcode::Andnpd,
),
_ => unimplemented!("unsupported op type {:?}", output_ty),
};
// Copy lhs into tmp.
let tmp_xmm1 = ctx.alloc_tmp(RegClass::V128, types::F32);
ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(lhs), tmp_xmm1, None));
// Perform max in reverse direction.
ctx.emit(Inst::xmm_rm_r(max_op, RegMem::reg(dst.to_reg()), tmp_xmm1));
// Perform max in original direction.
ctx.emit(Inst::xmm_rm_r(max_op, RegMem::reg(lhs), dst));
// Get the difference between the two results and store in tmp.
// Max uses a different approach than min to account for potential
// discrepancies with plus/minus 0.
ctx.emit(Inst::xmm_rm_r(xor_op, RegMem::reg(tmp_xmm1.to_reg()), dst));
// X64 handles propagation of -0's and Nans differently between left and right
// operands. After doing the max in both directions, this OR will
// guarentee capture of 0's and Nan in our tmp register.
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(dst.to_reg()), tmp_xmm1));
// Capture NaNs and sign discrepancies.
ctx.emit(Inst::xmm_rm_r(sub_op, RegMem::reg(dst.to_reg()), tmp_xmm1));
// Compare unordered to create mask for lanes containing NaNs and then use
// that mask to saturate the NaN containing lanes in the tmp register with 1s.
let cond = FcmpImm::from(FloatCC::Unordered);
ctx.emit(Inst::xmm_rm_r_imm(
cmp_op,
RegMem::reg(tmp_xmm1.to_reg()),
dst,
cond.encode(),
false,
));
// The dst register holds a mask for lanes containing NaNs.
// We take that mask and shift in preparation for creating a different mask
// to normalize NaNs (create a quite NaN) by zeroing out the appropriate
// number of least signficant bits. We shift right each lane by 10 bits
// (1 sign + 8 exp. + 1 MSB sig.) for F32X4 and by 13 bits (1 sign +
// 11 exp. + 1 MSB sig.) for F64X2.
ctx.emit(Inst::xmm_rmi_reg(shift_op, RegMemImm::imm(shift_by), dst));
// Finally we do a nand with the tmp register to produce the final results
// in the dst.
ctx.emit(Inst::xmm_rm_r(andn_op, RegMem::reg(tmp_xmm1.to_reg()), dst));
}
}
} }
Opcode::Sqrt => { Opcode::Sqrt => {

Loading…
Cancel
Save