Browse Source

Add a liveness verifier.

The liveness verifier will check that the live ranges are consistent
with the function. It runs as part of the register allocation pipeline
when enable_verifier is set.

The initial implementation checks the live ranges, but not the
ISA-specific constraints and affinities.
pull/3/head
Jakob Stoklund Olesen 8 years ago
parent
commit
85f277a2fb
  1. 2
      lib/cretonne/src/context.rs
  2. 11
      lib/cretonne/src/regalloc/context.rs
  3. 11
      lib/cretonne/src/regalloc/liverange.rs
  4. 179
      lib/cretonne/src/verifier/liveness.rs
  5. 38
      lib/cretonne/src/verifier/mod.rs
  6. 2
      src/utils.rs

2
lib/cretonne/src/context.rs

@ -81,7 +81,7 @@ impl Context {
/// Run the register allocator.
pub fn regalloc(&mut self, isa: &TargetIsa) -> CtonResult {
self.regalloc
.run(isa, &mut self.func, &self.cfg, &self.domtree);
.run(isa, &mut self.func, &self.cfg, &self.domtree)?;
self.verify_if(isa)
}
}

11
lib/cretonne/src/regalloc/context.rs

@ -11,6 +11,8 @@ use isa::TargetIsa;
use regalloc::coloring::Coloring;
use regalloc::live_value_tracker::LiveValueTracker;
use regalloc::liveness::Liveness;
use result::CtonResult;
use verifier::verify_liveness;
/// Persistent memory allocations for register allocation.
pub struct Context {
@ -40,7 +42,8 @@ impl Context {
isa: &TargetIsa,
func: &mut Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree) {
domtree: &DominatorTree)
-> CtonResult {
// `Liveness` and `Coloring` are self-clearing.
// Tracker state (dominator live sets) is actually reused between the spilling and coloring
// phases.
@ -49,10 +52,16 @@ impl Context {
// First pass: Liveness analysis.
self.liveness.compute(isa, func, cfg);
if isa.flags().enable_verifier() {
verify_liveness(isa, func, cfg, &self.liveness)?;
}
// TODO: Second pass: Spilling.
// Third pass: Reload and coloring.
self.coloring
.run(isa, func, domtree, &mut self.liveness, &mut self.tracker);
Ok(())
}
}

11
lib/cretonne/src/regalloc/liverange.rs

@ -174,12 +174,12 @@ pub struct LiveRange {
/// for contiguous EBBs where all but the last live-in interval covers the whole EBB.
///
#[derive(Copy, Clone)]
struct Interval {
pub struct Interval {
/// Interval starting point.
///
/// Since this interval does not represent the def of the value, it must begin at an EBB header
/// where the value is live-in.
begin: Ebb,
pub begin: Ebb,
/// Interval end point.
///
@ -190,7 +190,7 @@ struct Interval {
/// When this represents multiple contiguous live-in intervals, this is the end point of the
/// last interval. The other intervals end at the terminator instructions of their respective
/// EBB.
end: Inst,
pub end: Inst,
}
impl Interval {
@ -368,6 +368,11 @@ impl LiveRange {
.ok()
.map(|n| self.liveins[n].end)
}
/// Get all the live-in intervals.
pub fn liveins(&self) -> &[Interval] {
&self.liveins
}
}
/// Allow a `LiveRange` to be stored in a `SparseMap` indexed by values.

179
lib/cretonne/src/verifier/liveness.rs

@ -0,0 +1,179 @@
//! Liveness verifier.
use flowgraph::ControlFlowGraph;
use ir::{Function, Inst, Value, ProgramOrder, ProgramPoint, ExpandedProgramPoint};
use ir::entities::AnyEntity;
use isa::TargetIsa;
use regalloc::liveness::Liveness;
use regalloc::liverange::LiveRange;
use std::cmp::Ordering;
use verifier::Result;
/// Verify liveness information for `func`.
///
/// The provided control flow graph is assumed to be sound.
///
/// - All values in the program must have a live range.
/// - The live range def point must match where the value is defined.
/// - The live range must reach all uses.
/// - When a live range is live-in to an EBB, it must be live at all the predecessors.
/// - The live range affinity must be compatible with encoding constraints.
///
/// We don't verify that live ranges are minimal. This would require recomputing live ranges for
/// all values.
pub fn verify_liveness(_isa: &TargetIsa,
func: &Function,
cfg: &ControlFlowGraph,
liveness: &Liveness)
-> Result {
let verifier = LivenessVerifier {
func: func,
cfg: cfg,
liveness: liveness,
};
verifier.check_ebbs()?;
verifier.check_insts()?;
Ok(())
}
struct LivenessVerifier<'a> {
func: &'a Function,
cfg: &'a ControlFlowGraph,
liveness: &'a Liveness,
}
impl<'a> LivenessVerifier<'a> {
/// Check all EBB arguments.
fn check_ebbs(&self) -> Result {
for ebb in self.func.layout.ebbs() {
for &val in self.func.dfg.ebb_args(ebb) {
let lr = match self.liveness.get(val) {
Some(lr) => lr,
None => return err!(ebb, "EBB arg {} has no live range", val),
};
self.check_lr(ebb.into(), val, lr)?;
}
}
Ok(())
}
/// Check all instructions.
fn check_insts(&self) -> Result {
for ebb in self.func.layout.ebbs() {
for inst in self.func.layout.ebb_insts(ebb) {
// Check the defs.
for &val in self.func.dfg.inst_results(inst) {
let lr = match self.liveness.get(val) {
Some(lr) => lr,
None => return err!(inst, "{} has no live range", val),
};
self.check_lr(inst.into(), val, lr)?;
}
// Check the uses.
for &val in self.func.dfg.inst_args(inst) {
let lr = match self.liveness.get(val) {
Some(lr) => lr,
None => return err!(inst, "{} has no live range", val),
};
if !self.live_at_use(lr, inst) {
return err!(inst, "{} is not live at this use", val);
}
}
}
}
Ok(())
}
/// Is `lr` live at the use `inst`?
fn live_at_use(&self, lr: &LiveRange, inst: Inst) -> bool {
let l = &self.func.layout;
// Check if `inst` is in the def range, not including the def itself.
if l.cmp(lr.def(), inst) == Ordering::Less &&
l.cmp(inst, lr.def_local_end()) != Ordering::Greater {
return true;
}
// Otherwise see if `inst` is in one of the live-in ranges.
match lr.livein_local_end(l.inst_ebb(inst).unwrap(), l) {
Some(end) => l.cmp(inst, end) != Ordering::Greater,
None => false,
}
}
/// Check the integrity of the live range `lr`.
fn check_lr(&self, def: ProgramPoint, val: Value, lr: &LiveRange) -> Result {
let l = &self.func.layout;
let loc: AnyEntity = match def.into() {
ExpandedProgramPoint::Ebb(e) => e.into(),
ExpandedProgramPoint::Inst(i) => i.into(),
};
if lr.def() != def {
return err!(loc, "Wrong live range def ({}) for {}", lr.def(), val);
}
if lr.is_dead() {
if !lr.is_local() {
return err!(loc, "Dead live range {} should be local", val);
} else {
return Ok(());
}
}
let def_ebb = match def.into() {
ExpandedProgramPoint::Ebb(e) => e,
ExpandedProgramPoint::Inst(i) => l.inst_ebb(i).unwrap(),
};
match lr.def_local_end().into() {
ExpandedProgramPoint::Ebb(e) => {
return err!(loc, "Def local range for {} can't end at {}", val, e)
}
ExpandedProgramPoint::Inst(i) => {
if self.func.layout.inst_ebb(i) != Some(def_ebb) {
return err!(loc, "Def local end for {} in wrong ebb", val);
}
}
}
// Now check the live-in intervals against the CFG.
for &livein in lr.liveins() {
let mut ebb = livein.begin;
if !l.is_ebb_inserted(ebb) {
return err!(loc, "{} livein at {} which is not in the layout", val, ebb);
}
let end_ebb = match l.inst_ebb(livein.end) {
Some(e) => e,
None => {
return err!(loc,
"{} livein for {} ends at {} which is not in the layout",
val,
ebb,
livein.end)
}
};
// Check all the EBBs in the interval independently.
loop {
// If `val` is live-in at `ebb`, it must be live at all the predecessors.
for &(_, pred) in self.cfg.get_predecessors(ebb) {
if !self.live_at_use(lr, pred) {
return err!(pred,
"{} is live in to {} but not live at predecessor",
val,
ebb);
}
}
if ebb == end_ebb {
break;
}
ebb = match l.next_ebb(ebb) {
Some(e) => e,
None => return err!(loc, "end of {} livein ({}) never reached", val, end_ebb),
};
}
}
Ok(())
}
}

38
lib/cretonne/src/verifier/mod.rs

@ -64,6 +64,27 @@ use std::fmt::{self, Display, Formatter};
use std::result;
use std::collections::BTreeSet;
pub use self::liveness::verify_liveness;
// Create an `Err` variant of `Result<X>` from a location and `format!` arguments.
macro_rules! err {
( $loc:expr, $msg:expr ) => {
Err(::verifier::Error {
location: $loc.into(),
message: String::from($msg),
})
};
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
Err(::verifier::Error {
location: $loc.into(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}
mod liveness;
/// A verifier error.
#[derive(Debug, PartialEq, Eq)]
pub struct Error {
@ -88,23 +109,6 @@ impl std_error::Error for Error {
/// Verifier result.
pub type Result = result::Result<(), Error>;
// Create an `Err` variant of `Result<X>` from a location and `format!` arguments.
macro_rules! err {
( $loc:expr, $msg:expr ) => {
Err(Error {
location: $loc.into(),
message: String::from($msg),
})
};
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
Err(Error {
location: $loc.into(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}
/// Verify `func`.
pub fn verify_function(func: &Function) -> Result {
Verifier::new(func).run()

2
src/utils.rs

@ -40,7 +40,7 @@ pub fn pretty_verifier_error(func: &ir::Function, err: verifier::Error) -> Strin
AnyEntity::Inst(inst) => {
write!(msg, "\n{}: {}\n\n", inst, func.dfg.display_inst(inst)).unwrap()
}
_ => {}
_ => msg.push('\n'),
}
write_function(&mut msg, func, None).unwrap();
msg

Loading…
Cancel
Save