|
|
@ -8,12 +8,16 @@ use crate::frame::Frame; |
|
|
|
use crate::instruction::DfgInstructionContext; |
|
|
|
use crate::state::{MemoryError, State}; |
|
|
|
use crate::step::{step, ControlFlow, StepError}; |
|
|
|
use crate::value::ValueError; |
|
|
|
use crate::value::{Value, ValueError}; |
|
|
|
use cranelift_codegen::data_value::DataValue; |
|
|
|
use cranelift_codegen::ir::condcodes::{FloatCC, IntCC}; |
|
|
|
use cranelift_codegen::ir::{Block, FuncRef, Function, StackSlot, Type, Value as ValueRef}; |
|
|
|
use cranelift_codegen::ir::{ |
|
|
|
ArgumentPurpose, Block, FuncRef, Function, GlobalValue, GlobalValueData, Heap, StackSlot, Type, |
|
|
|
Value as ValueRef, |
|
|
|
}; |
|
|
|
use log::trace; |
|
|
|
use std::collections::HashSet; |
|
|
|
use std::convert::{TryFrom, TryInto}; |
|
|
|
use std::fmt::Debug; |
|
|
|
use std::iter; |
|
|
|
use thiserror::Error; |
|
|
@ -172,6 +176,21 @@ pub enum InterpreterError { |
|
|
|
FuelExhausted, |
|
|
|
} |
|
|
|
|
|
|
|
pub type HeapBacking = Vec<u8>; |
|
|
|
|
|
|
|
/// Represents a registered heap with an interpreter.
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq)] |
|
|
|
pub struct HeapId(u32); |
|
|
|
|
|
|
|
/// Options for initializing a heap memory region
|
|
|
|
#[derive(Debug)] |
|
|
|
pub enum HeapInit { |
|
|
|
/// A zero initialized heap with `size` bytes
|
|
|
|
Zeroed(usize), |
|
|
|
/// Initializes the heap with the backing memory unchanged.
|
|
|
|
FromBacking(HeapBacking), |
|
|
|
} |
|
|
|
|
|
|
|
/// Maintains the [Interpreter]'s state, implementing the [State] trait.
|
|
|
|
pub struct InterpreterState<'a> { |
|
|
|
pub functions: FunctionStore<'a>, |
|
|
@ -179,7 +198,7 @@ pub struct InterpreterState<'a> { |
|
|
|
/// Number of bytes from the bottom of the stack where the current frame's stack space is
|
|
|
|
pub frame_offset: usize, |
|
|
|
pub stack: Vec<u8>, |
|
|
|
pub heap: Vec<u8>, |
|
|
|
pub heaps: Vec<HeapBacking>, |
|
|
|
pub iflags: HashSet<IntCC>, |
|
|
|
pub fflags: HashSet<FloatCC>, |
|
|
|
} |
|
|
@ -191,7 +210,7 @@ impl Default for InterpreterState<'_> { |
|
|
|
frame_stack: vec![], |
|
|
|
frame_offset: 0, |
|
|
|
stack: Vec::with_capacity(1024), |
|
|
|
heap: vec![0; 1024], |
|
|
|
heaps: Vec::new(), |
|
|
|
iflags: HashSet::new(), |
|
|
|
fflags: HashSet::new(), |
|
|
|
} |
|
|
@ -203,6 +222,57 @@ impl<'a> InterpreterState<'a> { |
|
|
|
Self { functions, ..self } |
|
|
|
} |
|
|
|
|
|
|
|
/// Registers a static heap and returns a reference to it
|
|
|
|
///
|
|
|
|
/// This heap reference can be used to generate a heap pointer, which
|
|
|
|
/// can be used inside the interpreter to load / store values into the heap.
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// # use cranelift_codegen::ir::types::I64;
|
|
|
|
/// # use cranelift_interpreter::interpreter::{InterpreterState, HeapInit};
|
|
|
|
/// let mut state = InterpreterState::default();
|
|
|
|
/// let heap0 = state.register_heap(HeapInit::Zeroed(1024));
|
|
|
|
///
|
|
|
|
/// let backing = Vec::from([10u8; 24]);
|
|
|
|
/// let heap1 = state.register_heap(HeapInit::FromBacking(backing));
|
|
|
|
/// ```
|
|
|
|
pub fn register_heap(&mut self, init: HeapInit) -> HeapId { |
|
|
|
let heap_id = HeapId(self.heaps.len() as u32); |
|
|
|
|
|
|
|
self.heaps.push(match init { |
|
|
|
HeapInit::Zeroed(size) => iter::repeat(0).take(size).collect(), |
|
|
|
HeapInit::FromBacking(backing) => backing, |
|
|
|
}); |
|
|
|
|
|
|
|
heap_id |
|
|
|
} |
|
|
|
|
|
|
|
/// Returns a heap address that can be used inside the interpreter
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// # use cranelift_codegen::ir::types::I64;
|
|
|
|
/// # use cranelift_interpreter::interpreter::{InterpreterState, HeapInit};
|
|
|
|
/// let mut state = InterpreterState::default();
|
|
|
|
/// let heap_id = state.register_heap(HeapInit::Zeroed(1024));
|
|
|
|
/// let heap_base = state.get_heap_address(I64, heap_id, 0);
|
|
|
|
/// let heap_bound = state.get_heap_address(I64, heap_id, 1024);
|
|
|
|
/// ```
|
|
|
|
pub fn get_heap_address( |
|
|
|
&self, |
|
|
|
ty: Type, |
|
|
|
heap_id: HeapId, |
|
|
|
offset: u64, |
|
|
|
) -> Result<DataValue, MemoryError> { |
|
|
|
let size = AddressSize::try_from(ty)?; |
|
|
|
let heap_id = heap_id.0 as u64; |
|
|
|
let addr = Address::from_parts(size, AddressRegion::Heap, heap_id, offset)?; |
|
|
|
|
|
|
|
self.validate_address(&addr)?; |
|
|
|
let dv = addr.try_into()?; |
|
|
|
|
|
|
|
Ok(dv) |
|
|
|
} |
|
|
|
|
|
|
|
fn current_frame_mut(&mut self) -> &mut Frame<'a> { |
|
|
|
let num_frames = self.frame_stack.len(); |
|
|
|
match num_frames { |
|
|
@ -310,23 +380,54 @@ impl<'a> State<'a, DataValue> for InterpreterState<'a> { |
|
|
|
Address::from_parts(size, AddressRegion::Stack, 0, final_offset) |
|
|
|
} |
|
|
|
|
|
|
|
fn heap_address(&self, _size: AddressSize, _offset: u64) -> Result<Address, MemoryError> { |
|
|
|
unimplemented!() |
|
|
|
/// Builds an [Address] for the [Heap] referenced in the currently executing function.
|
|
|
|
///
|
|
|
|
/// A CLIF Heap is essentially a GlobalValue and some metadata about that memory
|
|
|
|
/// region, such as bounds. Since heaps are based on Global Values it means that
|
|
|
|
/// once that GV is resolved we can essentially end up anywhere in memory.
|
|
|
|
///
|
|
|
|
/// To build an [Address] we perform GV resolution, and try to ensure that we end up
|
|
|
|
/// in a valid region of memory.
|
|
|
|
fn heap_address( |
|
|
|
&self, |
|
|
|
size: AddressSize, |
|
|
|
heap: Heap, |
|
|
|
offset: u64, |
|
|
|
) -> Result<Address, MemoryError> { |
|
|
|
let heap_data = &self.get_current_function().heaps[heap]; |
|
|
|
let heap_base = self.resolve_global_value(heap_data.base)?; |
|
|
|
let mut addr = Address::try_from(heap_base)?; |
|
|
|
addr.size = size; |
|
|
|
addr.offset += offset; |
|
|
|
|
|
|
|
// After resolving the address can point anywhere, we need to check if it's
|
|
|
|
// still valid.
|
|
|
|
self.validate_address(&addr)?; |
|
|
|
|
|
|
|
Ok(addr) |
|
|
|
} |
|
|
|
|
|
|
|
fn checked_load(&self, addr: Address, ty: Type) -> Result<DataValue, MemoryError> { |
|
|
|
let load_size = ty.bytes() as usize; |
|
|
|
let addr_start = addr.offset as usize; |
|
|
|
let addr_end = addr_start + load_size; |
|
|
|
|
|
|
|
let src = match addr.region { |
|
|
|
AddressRegion::Stack => { |
|
|
|
let addr_start = addr.offset as usize; |
|
|
|
let addr_end = addr_start + load_size; |
|
|
|
if addr_end > self.stack.len() { |
|
|
|
return Err(MemoryError::OutOfBoundsLoad { addr, load_size }); |
|
|
|
} |
|
|
|
|
|
|
|
&self.stack[addr_start..addr_end] |
|
|
|
} |
|
|
|
AddressRegion::Heap => { |
|
|
|
let heap_mem = match self.heaps.get(addr.entry as usize) { |
|
|
|
Some(mem) if addr_end <= mem.len() => mem, |
|
|
|
_ => return Err(MemoryError::OutOfBoundsLoad { addr, load_size }), |
|
|
|
}; |
|
|
|
|
|
|
|
&heap_mem[addr_start..addr_end] |
|
|
|
} |
|
|
|
_ => unimplemented!(), |
|
|
|
}; |
|
|
|
|
|
|
@ -335,28 +436,172 @@ impl<'a> State<'a, DataValue> for InterpreterState<'a> { |
|
|
|
|
|
|
|
fn checked_store(&mut self, addr: Address, v: DataValue) -> Result<(), MemoryError> { |
|
|
|
let store_size = v.ty().bytes() as usize; |
|
|
|
let addr_start = addr.offset as usize; |
|
|
|
let addr_end = addr_start + store_size; |
|
|
|
|
|
|
|
let dst = match addr.region { |
|
|
|
AddressRegion::Stack => { |
|
|
|
let addr_start = addr.offset as usize; |
|
|
|
let addr_end = addr_start + store_size; |
|
|
|
if addr_end > self.stack.len() { |
|
|
|
return Err(MemoryError::OutOfBoundsStore { addr, store_size }); |
|
|
|
} |
|
|
|
|
|
|
|
&mut self.stack[addr_start..addr_end] |
|
|
|
} |
|
|
|
AddressRegion::Heap => { |
|
|
|
let heap_mem = match self.heaps.get_mut(addr.entry as usize) { |
|
|
|
Some(mem) if addr_end <= mem.len() => mem, |
|
|
|
_ => return Err(MemoryError::OutOfBoundsStore { addr, store_size }), |
|
|
|
}; |
|
|
|
|
|
|
|
&mut heap_mem[addr_start..addr_end] |
|
|
|
} |
|
|
|
_ => unimplemented!(), |
|
|
|
}; |
|
|
|
|
|
|
|
Ok(v.write_to_slice(dst)) |
|
|
|
} |
|
|
|
|
|
|
|
/// Non-Recursively resolves a global value until its address is found
|
|
|
|
fn resolve_global_value(&self, gv: GlobalValue) -> Result<DataValue, MemoryError> { |
|
|
|
// Resolving a Global Value is a "pointer" chasing operation that lends itself to
|
|
|
|
// using a recursive solution. However, resolving this in a recursive manner
|
|
|
|
// is a bad idea because its very easy to add a bunch of global values and
|
|
|
|
// blow up the call stack.
|
|
|
|
//
|
|
|
|
// Adding to the challenges of this, is that the operations possible with GlobalValues
|
|
|
|
// mean that we cannot use a simple loop to resolve each global value, we must keep
|
|
|
|
// a pending list of operations.
|
|
|
|
|
|
|
|
// These are the possible actions that we can perform
|
|
|
|
#[derive(Debug)] |
|
|
|
enum ResolveAction { |
|
|
|
Resolve(GlobalValue), |
|
|
|
/// Perform an add on the current address
|
|
|
|
Add(DataValue), |
|
|
|
/// Load From the current address and replace it with the loaded value
|
|
|
|
Load { |
|
|
|
/// Offset added to the base pointer before doing the load.
|
|
|
|
offset: i32, |
|
|
|
|
|
|
|
/// Type of the loaded value.
|
|
|
|
global_type: Type, |
|
|
|
}, |
|
|
|
} |
|
|
|
|
|
|
|
let func = self.get_current_function(); |
|
|
|
|
|
|
|
// We start with a sentinel value that will fail if we try to load / add to it
|
|
|
|
// without resolving the base GV First.
|
|
|
|
let mut current_val = DataValue::B(false); |
|
|
|
let mut action_stack = vec![ResolveAction::Resolve(gv)]; |
|
|
|
|
|
|
|
loop { |
|
|
|
match action_stack.pop() { |
|
|
|
Some(ResolveAction::Resolve(gv)) => match func.global_values[gv] { |
|
|
|
GlobalValueData::VMContext => { |
|
|
|
// Fetch the VMContext value from the values of the first block in the function
|
|
|
|
let index = func |
|
|
|
.signature |
|
|
|
.params |
|
|
|
.iter() |
|
|
|
.enumerate() |
|
|
|
.find(|(_, p)| p.purpose == ArgumentPurpose::VMContext) |
|
|
|
.map(|(i, _)| i) |
|
|
|
// This should be validated by the verifier
|
|
|
|
.expect("No VMCtx argument was found, but one is referenced"); |
|
|
|
|
|
|
|
let first_block = |
|
|
|
func.layout.blocks().next().expect("to have a first block"); |
|
|
|
let vmctx_value = func.dfg.block_params(first_block)[index]; |
|
|
|
current_val = self.current_frame().get(vmctx_value).clone(); |
|
|
|
} |
|
|
|
GlobalValueData::Load { |
|
|
|
base, |
|
|
|
offset, |
|
|
|
global_type, |
|
|
|
.. |
|
|
|
} => { |
|
|
|
action_stack.push(ResolveAction::Load { |
|
|
|
offset: offset.into(), |
|
|
|
global_type, |
|
|
|
}); |
|
|
|
action_stack.push(ResolveAction::Resolve(base)); |
|
|
|
} |
|
|
|
GlobalValueData::IAddImm { |
|
|
|
base, |
|
|
|
offset, |
|
|
|
global_type, |
|
|
|
} => { |
|
|
|
let offset: i64 = offset.into(); |
|
|
|
let dv = DataValue::int(offset as i128, global_type) |
|
|
|
.map_err(|_| MemoryError::InvalidAddressType(global_type))?; |
|
|
|
action_stack.push(ResolveAction::Add(dv)); |
|
|
|
action_stack.push(ResolveAction::Resolve(base)); |
|
|
|
} |
|
|
|
GlobalValueData::Symbol { .. } => unimplemented!(), |
|
|
|
}, |
|
|
|
Some(ResolveAction::Add(dv)) => { |
|
|
|
current_val = current_val |
|
|
|
.add(dv.clone()) |
|
|
|
.map_err(|_| MemoryError::InvalidAddress(dv))?; |
|
|
|
} |
|
|
|
Some(ResolveAction::Load { |
|
|
|
offset, |
|
|
|
global_type, |
|
|
|
}) => { |
|
|
|
let mut addr = Address::try_from(current_val)?; |
|
|
|
// We can forego bounds checking here since its performed in `checked_load`
|
|
|
|
addr.offset += offset as u64; |
|
|
|
current_val = self.checked_load(addr, global_type)?; |
|
|
|
} |
|
|
|
|
|
|
|
// We are done resolving this, return the current value
|
|
|
|
None => return Ok(current_val), |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
fn validate_address(&self, addr: &Address) -> Result<(), MemoryError> { |
|
|
|
match addr.region { |
|
|
|
AddressRegion::Stack => { |
|
|
|
let stack_len = self.stack.len() as u64; |
|
|
|
|
|
|
|
if addr.offset > stack_len { |
|
|
|
return Err(MemoryError::InvalidEntry { |
|
|
|
entry: addr.entry, |
|
|
|
max: self.heaps.len() as u64, |
|
|
|
}); |
|
|
|
} |
|
|
|
} |
|
|
|
AddressRegion::Heap => { |
|
|
|
let heap_len = self |
|
|
|
.heaps |
|
|
|
.get(addr.entry as usize) |
|
|
|
.ok_or_else(|| MemoryError::InvalidEntry { |
|
|
|
entry: addr.entry, |
|
|
|
max: self.heaps.len() as u64, |
|
|
|
}) |
|
|
|
.map(|heap| heap.len() as u64)?; |
|
|
|
|
|
|
|
if addr.offset > heap_len { |
|
|
|
return Err(MemoryError::InvalidOffset { |
|
|
|
offset: addr.offset, |
|
|
|
max: heap_len, |
|
|
|
}); |
|
|
|
} |
|
|
|
} |
|
|
|
_ => unimplemented!(), |
|
|
|
} |
|
|
|
|
|
|
|
Ok(()) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#[cfg(test)] |
|
|
|
mod tests { |
|
|
|
use super::*; |
|
|
|
use crate::step::CraneliftTrap; |
|
|
|
use cranelift_codegen::ir::types::I64; |
|
|
|
use cranelift_codegen::ir::TrapCode; |
|
|
|
use cranelift_reader::parse_functions; |
|
|
|
|
|
|
@ -720,4 +965,51 @@ mod tests { |
|
|
|
|
|
|
|
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds)); |
|
|
|
} |
|
|
|
|
|
|
|
/// Most heap tests are in .clif files using the filetest machinery. However, this is a sanity
|
|
|
|
/// check that the heap mechanism works without the rest of the filetest infrastructure
|
|
|
|
#[test] |
|
|
|
fn heap_sanity_test() { |
|
|
|
let code = " |
|
|
|
function %heap_load_store(i64 vmctx) -> b1 { |
|
|
|
gv0 = vmctx |
|
|
|
gv1 = load.i64 notrap aligned gv0+0 |
|
|
|
; gv2/3 do nothing, but makes sure we understand the iadd_imm mechanism |
|
|
|
gv2 = iadd_imm.i64 gv1, 1 |
|
|
|
gv3 = iadd_imm.i64 gv2, -1 |
|
|
|
heap0 = static gv3, min 0x1000, bound 0x1_0000_0000, offset_guard 0, index_type i64 |
|
|
|
|
|
|
|
block0(v0: i64): |
|
|
|
v1 = iconst.i64 0 |
|
|
|
v2 = iconst.i64 123 |
|
|
|
v3 = heap_addr.i64 heap0, v1, 8 |
|
|
|
store.i64 v2, v3 |
|
|
|
v4 = load.i64 v3 |
|
|
|
v5 = icmp eq v2, v4 |
|
|
|
return v5 |
|
|
|
}"; |
|
|
|
|
|
|
|
let func = parse_functions(code).unwrap().into_iter().next().unwrap(); |
|
|
|
let mut env = FunctionStore::default(); |
|
|
|
env.add(func.name.to_string(), &func); |
|
|
|
let mut state = InterpreterState::default().with_function_store(env); |
|
|
|
|
|
|
|
let heap0 = state.register_heap(HeapInit::Zeroed(0x1000)); |
|
|
|
let base_addr = state.get_heap_address(I64, heap0, 0).unwrap(); |
|
|
|
|
|
|
|
// Build a vmctx struct by writing the base pointer at index 0
|
|
|
|
let mut vmctx_struct = vec![0u8; 8]; |
|
|
|
base_addr.write_to_slice(&mut vmctx_struct[..]); |
|
|
|
|
|
|
|
// This is our vmctx "heap"
|
|
|
|
let vmctx = state.register_heap(HeapInit::FromBacking(vmctx_struct)); |
|
|
|
let vmctx_addr = state.get_heap_address(I64, vmctx, 0).unwrap(); |
|
|
|
|
|
|
|
let result = Interpreter::new(state) |
|
|
|
.call_by_name("%heap_load_store", &[vmctx_addr]) |
|
|
|
.unwrap() |
|
|
|
.unwrap_return(); |
|
|
|
|
|
|
|
assert_eq!(result, vec![DataValue::B(true)]) |
|
|
|
} |
|
|
|
} |
|
|
|