* Wasmtime: Finish support for the typed function references proposal
While we supported the function references proposal inside Wasm, we didn't
support it on the "outside" in the Wasmtime embedder APIs. So much of the work
here is exposing typed function references, and their type system updates, in
the embedder API. These changes include:
* `ValType::FuncRef` and `ValType::ExternRef` are gone, replaced with the
introduction of the `RefType` and `HeapType` types and a
`ValType::Ref(RefType)` variant.
* `ValType` and `FuncType` no longer implement `Eq` and `PartialEq`. Instead
there are `ValType::matches` and `FuncType::matches` methods which check
directional subtyping. I also added `ValType::eq` and `FuncType::eq` static
methods for the rare case where someone needs to check precise equality, but
that is almost never actually the case, 99.99% of the time you want to check
subtyping.
* There are also public `Val::matches_ty` predicates for checking if a value is
an instance of a type, as well as internal helpers like
`Val::ensure_matches_ty` that return a formatted error if the value does not
match the given type. These helpers are used throughout Wasmtime internals
now.
* There is now a dedicated `wasmtime::Ref` type that represents reference
values. Table operations have been updated to take and return `Ref`s rather
than `Val`s.
Furthermore, this commit also includes type registry changes to correctly manage
lifetimes of types that reference other types. This wasn't previously an issue
because the only thing that could reference types that reference other types was
a Wasm module that added all the types that could reference each other at the
same time and removed them all at the same time. But now that the previously
discussed work to expose these things in the embedder API is done, type lifetime
management in the registry becomes a little trickier because the embedder might
grab a reference to a type that references another type, and then unload the
Wasm module that originally defined that type, but then the user should still be
able use that type and the other types it transtively references. Before, we
were refcounting individual registry entries. Now, we still are refcounting
individual entries, but now we are also accounting for type-to-type references
and adding a new type to the registry will increment the refcounts of each of
the types that it references, and removing a type from the registry will
decrement the refcounts of each of the types it references, and then recursively
(logically, not literally) remove any types whose refcount has now reached zero.
Additionally, this PR adds support for subtyping to `Func::typed`- and
`Func::wrap`-style APIs. For result types, you can always use a supertype of the
WebAssembly function's actual declared return type in `Func::typed`. And for
param types, you can always use a subtype of the Wasm function's actual declared
param type. Doing these things essentially erases information but is always
correct. But additionally, for functions which take a reference to a concrete
type as a parameter, you can also use the concrete type's supertype. Consider a
WebAssembly function that takes a reference to a function with a concrete type:
`(ref null <func type index>)`. In this scenario, there is no static
`wasmtime::Foo` Rust type that corresponds to that particular Wasm-defined
concrete reference type because Wasm modules are loaded dynamically at
runtime. You *could* do `f.typed::<Option<NoFunc>, ()>()`, and while that is
correctly typed and valid, it is often overly restrictive. The only value you
could call the resulting typed function with is the null function reference, but
we'd like to call it with non-null function references that happen to be of the
correct type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
case, even though `Option<Func>` represents `(ref null func)` which is the
supertype, not subtype, of `(ref null <func type index>)`. This does imply some
minimal dynamic type checks in this case, but it is supported for better
ergonomics, to enable passing non-null references into the function.
We can investigate whether it is possible to use generic type parameters and
combinators to define Rust types that precisely match concrete reference types
in future, follow-up pull requests. But for now, we've made things usable, at
least.
Finally, this also takes the first baby step towards adding support for the Wasm
GC proposal. Right now the only thing that is supported is `nofunc` references,
and this was mainly to make testing function reference subtyping easier. But
that does mean that supporting `nofunc` references entailed also adding a
`wasmtime::NoFunc` type as well as the `Config::wasm_gc(enabled)` knob. So we
officially have an in-progress implementation of Wasm GC in Wasmtime after this
PR lands!
Fixes https://github.com/bytecodealliance/wasmtime/issues/6455
* Fix WAT in test to be valid
* Check that dependent features are enabled for function-references and GC
* Remove unnecessary engine parameters from a few methods
Ever since `FuncType`'s internal `RegisteredType` holds onto its own `Engine`,
we don't need these anymore.
Still useful to keep the `Engine` parameter around for the `ensure_matches`
methods because that can be used to check correct store/engine usage for
embedders.
* Add missing dependent feature enabling for some tests
* Remove copy-paste bit from test
* match self to show it is uninhabited
* Add a missing `is_v128` method
* Short circuit a few func type comparisons
* Turn comment into part of doc comment
* Add test for `Global::new` and subtyping
* Add tests for embedder API, tables, and subtyping
* Add an embedder API test for setting globals and subtyping
* Construct realloc's type from its index, rather than from scratch
* Help LLVM better optimize our dynamic type checks in `TypedFunc::call_raw`
* Fix call benchmark compilation
* Change `WasmParams::into_abi` to take the whole func type instead of iter of params
* Fix doc links
prtest:full
* Fix size assertion on s390x
* WIP: try to make wasi-common self contained.
* rebase: cargo.lock
* remove all dependencies between wasi-common and wasmtime-wasi
* use wasi-common directly throughout tests, benches, examples, cli run
* wasi-threads: use wasi-common's maybe_exit_on_error in spawned thread
not a very modular design, but at this point wasi-common and
wasi-threads are forever wed
* fix wasmtime's docs
* re-introduce wasmtime-wasi's exports of wasi-common definitions behind deprecated
* factor out determining i32 process exit code
and remove libc dep because rustix provides the same constant
* commands/run: inline the logic about aborting on trap
since this is the sole place in the codebase its used
* Add high-level summary to wasi-common's top-level doc comment.
* c-api: fix use of wasi_cap_std_sync => wasi_common::sync, wasmtime_wasi => wasi_common
* fix tokio example
* think better of combining downcast and masking into one method
* fix references to wasmtime_wasi in docs
prtest:full
* benches: use wasi-common
* cfg-if around use of rustix::process because that doesnt exist on windows
* wasi-common: include tests, caught by verify-publish
* fix another bench
* exit requires wasmtime dep. caught by verify-publish.
* mpk: enable MPK if available in CI
After discussing several options for testing MPK in CI, this stopgap
measure at least provides some coverage. Other options include
maintaining a separate MPK-enabled CI runner (configuration is not
transparent, hard to maintain) or running the MPK-enabled tests in a
system-mode QEMU VM (tricky to get right, also hard to maintain). For
now, those of us at the Cranelift meeting agreed this at least gets some
CI testing for the MPK bits, which shouldn't be changing too often.
Since not all GitHub runners have MPK available, we only set the
`WASMTIME_TEST_FORCE_MPK` environment variable when it is. This change
also emits a warning to the GitHub logs in either case for easier
troubleshooting (e.g., to attempt to provide context if MPK logic breaks
and is only found in a later CI run).
prtest:full
* review: create a separate matrix entry
As requested by @alexcrichton, this change limits the MPK testing (and
the associated warnings) to a new matrix target: `Test Linux x86_64 with
MPK`.
* Remove `+ Sync` constraints from preview2 implementation
* Only use mutable references in WasiView to guarantee unique access to Preview2 resources. Removed the _mut suffixes to align with WasiHttpView.
* Always use Descriptor::Directory for directories, regardless of whether they were preopened or opened using open_at. This fixes build errors regarding overlapping mutable lifetimes introduced in the previous commit.
* Remove some more `+ Sync`s
* Remove one more
* typo
* Fix build errors on Rust <= 1.73. Code already compiled fine on >= 1.74
* Update several dependencies to windows-sys 0.52.
Update cap-std, rustix, io-extras, errno, fd-lock, fs-set-times, and
winx to versions which use windows-sys 0.52.
I started out hoping that everything could be updated to
windows-sys 0.52, however tokio and mio have not yet updated to
windows-sys 0.52 due to supporting an older MSRV.
* Link the C++ examples with CoreFoundation.
This is needed due to the iana-time-zone support.
prtest:full
* Fix compilation on non-Apple platfoms.
* Fix compilation on Apple platforms.
This commit is an attempt to address the CI failure popping up in #7636.
I can reproduce the failure locally and it appears to be due to the fact
that macOS is giving spawned threads via `pthread_create` a 512K stack
by default. Cranelift when compiled in debug mode is taking more stack
than this (but working in release mode). I was talking with Trevor and
Jamey about possible ways to reduce the stack size here but for now I'm
going with Jamey's suggestion of increasing the stack size as the best
course of action for now.
* mpk: allow checking for MPK without a config instance
It is inconvenient to have to construct a `PoolingAllocationConfig` in
order to check if memory protection keys are available. This removes
the unused `&self` restriction.
* mpk: improve logging of calculated slab layout
When double-checking the slab layout calculations it is quite convenient
to see the total slab size. This helps in correlating with mapped
regions.
* mpk: add an example testing the memory limits
This adds an example that can be run with `cargo run --example mpk`. Not
only does the example demonstrate how to build a pool-allocated engine
that uses MPK, it performs an exponential search to find the maximum
number of slots the system can support, with and without MPK.
* review: document Linux requirement
* review: `env_logger::init`
* review: replace `proc-maps` with manual parsing
* vet: audit `bytesize`
* fix: provide `main` for non-Linux systems
* fix: move `cfg` to avoid unused code
* Configure Rust lints at the workspace level
This commit adds necessary configuration knobs to have lints configured
at the workspace level in Wasmtime rather than the crate level. This
uses a feature of Cargo first released with 1.74.0 (last week) of the
`[workspace.lints]` table. This should help create a more consistent set
of lints applied across all crates in our workspace in addition to
possibly running select clippy lints on CI as well.
* Move `unused_extern_crates` to the workspace level
This commit configures a `deny` lint level for the
`unused_extern_crates` lint to the workspace level rather than the
previous configuration at the individual crate level.
* Move `trivial_numeric_casts` to workspace level
* Change workspace lint levels to `warn`
CI will ensure that these don't get checked into the codebase and
otherwise provide fewer speed bumps for in-process development.
* Move `unstable_features` lint to workspace level
* Move `unused_import_braces` lint to workspace level
* Start running Clippy on CI
This commit configures our CI to run `cargo clippy --workspace` for all
merged PRs. Historically this hasn't been all the feasible due to the
amount of configuration required to control the number of warnings on
CI, but with Cargo's new `[lint]` table it's possible to have a
one-liner to silence all lints from Clippy by default. This commit by
default sets the `all` lint in Clippy to `allow` to by-default disable
warnings from Clippy. The goal of this PR is to enable selective access
to Clippy lints for Wasmtime on CI.
* Selectively enable `clippy::cast_sign_loss`
This would have fixed#7558 so try to head off future issues with that
by warning against this situation in a few crates. This lint is still
quite noisy though for Cranelift for example so it's not worthwhile at
this time to enable it for the whole workspace.
* Fix CI error
prtest:full
In an effort to simplify the many fuel related APIs, simplify the
interface here to a single counter with get and set methods.
Additionally the async yield is reduced to an interval of the total fuel
instead of injecting fuel, so it's easy to still reason about how much
fuel is left even with yielding turned on.
Internally this works by keeping two counters - one the VM uses to
increment towards 0 for fuel, the other to track how much is in
"reserve". Then when we're out of gas, we pull from the reserve to
refuel and continue. We use the reserve in two cases: one for overflow
of the fuel (which is an i64 and the API expresses fuel as u64) and the
other for async yieling, which then the yield interval acts as a cap to
how much we can refuel with.
This also means that `get_fuel` can return the full range of `u64`
before this change it could only return up to `i64::MAX`. This is
important because this PR is removing the functionality to track fuel
consumption, and this makes the API less error prone for embedders to
track consumption themselves.
Careful to note that the VM counter that is stored as `i64` can be
positive if an instruction "costs" multiple units of fuel when the fuel
ran out.
prtest:full
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Add a feature for async
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Add support for async config
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Add support for calling async functions
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Add ability to yield execution of Wasm in a store
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Introduce wasmtime_linker_instantiate_async
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Support defining async host functions
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* gitignore: ignore cmake cache for examples
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* examples: Add example of async API in C
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Consolidate async functionality into a single place
Put all the async stuff in it's own header and own rust source file
Also remove the wasmtime_async_continuation_new function, users can just
allocate it directly.
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Make async function safe
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Remove wasmtime_call_future_get_results
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Simplify CHostCallFuture
Move the result translation and hostcall_val_storage usage into an async
function
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Simplify C continuation implementation
Remove the caller, which means that we don't need another struct for the
future implementation.
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Improve async.h documentation
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Cleanup from previous changes
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* examples: Fix example
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Simplify continuation callback
This gives more duality with calling an async function and also means
that the implementation can pretty much mirror the sync version.
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Fix async.h documentation
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Fix documentation for async.h
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: Review feedback
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* examples: Downgrade async.cpp example to C++11
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* c-api: initialize continuation with a panic callback
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* prtest:full
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
---------
Signed-off-by: Tyler Rockwood <rockwood@redpanda.com>
* Bump wasm-tools crates
Two major changes/reasons for this update:
* Primarily pulling in support for semicolons-in-WIT files. Semicolons are
not currently required, though, so I'll follow-up later with actual
semicolons.
* The syntax for parsing `(if ...)` was fixed in `wast`. Previously it
did not require `(then ...)` but this is required by the spec. New
spec tests require this as well. This breaks existing text format
tests which don't use `(then ...)` inside of an `(if ...)`. Most tests
were updated by hand but `embenchen_*` tests were updated by running
through the old parser to produce non-s-expression using code.
* Fix an example `*.wat`
* Remove explicit `S` type parameters
This commit removes the explicit `S` type parameter on `Func::typed` and
`Instance::get_typed_func`. Historical versions of Rust required that
this be a type parameter but recent rustcs support a mixture of explicit
type parameters and `impl Trait`. This removes, at callsites, a
superfluous `, _` argument which otherwise never needs specification.
* Fix mdbook examples
This commit adds the missing "out of fuel" trap code to the C API.
Without this, calls to `wasmtime_trap_code` will trigger an unreachable panic
on traps from running out of fuel.
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Add cmake compatibility to c-api
* Add CMake documentation to wasmtime.h
* Add CMake instructions in examples
* Modify CI for CMake support
* Use correct rust in CI
* Trigger build
* Refactor run-examples
* Reintroduce example_to_run in run-examples
* Replace run-examples crate with cmake
* Fix markdown formatting in examples readme
* Fix cmake test quotes
* Build rust wasm before cmake tests
* Pass CTEST_OUTPUT_ON_FAILURE
* Another cmake test
* Handle os differences in cmake test
* Fix bugs in memory and multimemory examples
* Update the wasm-tools family of crates
This commit updates these crates as used by Wasmtime for the recently
published versions to pull in changes necessary to support the component
model. I've split this out from #4005 to make it clear what's impacted
here and #4005 can simply rebase on top of this to pick up the necessary
changes.
* More test fixes
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Delete historical interruptable support in Wasmtime
This commit removes the `Config::interruptable` configuration along with
the `InterruptHandle` type from the `wasmtime` crate. The original
support for adding interruption to WebAssembly was added pretty early on
in the history of Wasmtime when there was no other method to prevent an
infinite loop from the host. Nowadays, however, there are alternative
methods for interruption such as fuel or epoch-based interruption.
One of the major downsides of `Config::interruptable` is that even when
it's not enabled it forces an atomic swap to happen when entering
WebAssembly code. This technically could be a non-atomic swap if the
configuration option isn't enabled but that produces even more branch-y
code on entry into WebAssembly which is already something we try to
optimize. Calling into WebAssembly is on the order of a dozens of
nanoseconds at this time and an atomic swap, even uncontended, can add
up to 5ns on some platforms.
The main goal of this PR is to remove this atomic swap on entry into
WebAssembly. This is done by removing the `Config::interruptable` field
entirely, moving all existing consumers to epochs instead which are
suitable for the same purposes. This means that the stack overflow check
is no longer entangled with the interruption check and perhaps one day
we could continue to optimize that further as well.
Some consequences of this change are:
* Epochs are now the only method of remote-thread interruption.
* There are no more Wasmtime traps that produces the `Interrupted` trap
code, although we may wish to move future traps to this so I left it
in place.
* The C API support for interrupt handles was also removed and bindings
for epoch methods were added.
* Function-entry checks for interruption are a tiny bit less efficient
since one check is performed for the stack limit and a second is
performed for the epoch as opposed to the `Config::interruptable`
style of bundling the stack limit and the interrupt check in one. It's
expected though that this is likely to not really be measurable.
* The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`.
This PR introduces a new way of performing cooperative timeslicing that
is intended to replace the "fuel" mechanism. The tradeoff is that this
mechanism interrupts with less precision: not at deterministic points
where fuel runs out, but rather when the Engine enters a new epoch. The
generated code instrumentation is substantially faster, however, because
it does not need to do as much work as when tracking fuel; it only loads
the global "epoch counter" and does a compare-and-branch at backedges
and function prologues.
This change has been measured as ~twice as fast as fuel-based
timeslicing for some workloads, especially control-flow-intensive
workloads such as the SpiderMonkey JS interpreter on Wasm/WASI.
The intended interface is that the embedder of the `Engine` performs an
`engine.increment_epoch()` call periodically, e.g. once per millisecond.
An async invocation of a Wasm guest on a `Store` can specify a number of
epoch-ticks that are allowed before an async yield back to the
executor's event loop. (The initial amount and automatic "refills" are
configured on the `Store`, just as for fuel.) This call does only
signal-safe work (it increments an `AtomicU64`) so could be invoked from
a periodic signal, or from a thread that wakes up once per period.
* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
Eventually this should be added to the wasmtime-go binding, addressing
https://github.com/bytecodealliance/wasmtime-go/issues/63.
Added a snippet to examples/interrupt.c to verify that this works as
expected in manual testing.
Signed-off-by: Stephan Renatus <stephan.renatus@gmail.com>
* Change the injection count of fuel in a store from u32 to u64
This commit updates the type of the amount of times to inject fuel in
the `out_of_fuel_async_yield` to `u64` instead of `u32`. This should
allow effectively infinite fuel to get injected, even if a small amount
of fuel is injected per iteration.
Closes#2927Closes#3046
* Fix tokio example
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* wasmtime-wasi: re-exporting this WasiCtxBuilder was shadowing the right one
wasi-common's WasiCtxBuilder is really only useful wasi_cap_std_sync and
wasi_tokio to implement their own Builder on top of.
This re-export of wasi-common's is 1. not useful and 2. shadow's the
re-export of the right one in sync::*.
* wasi-common: eliminate WasiCtxBuilder, make the builder methods on WasiCtx instead
* delete wasi-common::WasiCtxBuilder altogether
just put those methods directly on &mut WasiCtx.
As a bonus, the sync and tokio WasiCtxBuilder::build functions
are no longer fallible!
* bench fixes
* more test fixes
* Add example of execution limits using fuel consumption
* run rustfmt
* Use a more naive WAT implementation
* Catch error and return cleanly
* Add a C example to demonstrate fuel consumption
* Add error handling for add_fuel
* Bring back `Module::deserialize`
I thought I was being clever suggesting that `Module::deserialize` was
removed from #2791 by funneling all module constructors into
`Module::new`. As our studious fuzzers have found, though, this means
that `Module::new` is not safe currently to pass arbitrary user-defined
input into. Now one might pretty reasonable expect to be able to do
that, however, being a WebAssembly engine and all. This PR as a result
separates the `deserialize` part of `Module::new` back into
`Module::deserialize`.
This means that binary blobs created with `Module::serialize` and
`Engine::precompile_module` will need to be passed to
`Module::deserialize` to "rehydrate" them back into a `Module`. This
restores the property that it should be safe to pass arbitrary input to
`Module::new` since it's always expected to be a wasm module. This also
means that fuzzing will no longer attempt to fuzz `Module::deserialize`
which isn't something we want to do anyway.
* Fix an example
* Mark `Module::deserialize` as `unsafe`
* Add resource limiting to the Wasmtime API.
This commit adds a `ResourceLimiter` trait to the Wasmtime API.
When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.
This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.
A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.
* Code review feedback.
* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
`StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
`wasmtime::Table`.
* Code review feedback and bug fix.
* `Memory::new` now returns `Result<Self>` so that an error can be returned if
the initial requested memory exceeds any limits placed on the store.
* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.
* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
implementations are free to capture any context they want, so no need to
unnecessarily store a weak reference to `Store` from the proxy type.
* Fixed a bug in the pooling instance allocator where an instance would be
leaked from the pool. Previously, this would only have happened if the OS was
unable to make the necessary linear memory available for the instance. With
these changes, however, the instance might not be created due to limits
placed on the store. We now properly deallocate the instance on error.
* Added more tests, including one that covers the fix mentioned above.
* Code review feedback.
* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
`ResourceLimiter`.
* Fully support multiple returns in Wasmtime
For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.
The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.
This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.
These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!
Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.
Closes#1178
* Tweak some names and add docs
* "fix" lightbeam compile
* Fix TODO with dummy environ
* Unwind info is a property of the target, not the ABI
* Remove lightbeam unused imports
* Attempt to fix arm64
* Document new ABIs aren't stable
* Fix filetests to use the right target
* Don't always do 64-bit stores with cranelift
This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.
* At least get tests passing on the old backend
* Fix a typo
* Add some filetests with mixed abi calls
* Get `multi` example working
* Fix doctests on old x86 backend
* Add a mixture of wasmtime/system_v tests
* Move `Module::compile` to `Engine::precompile_module`.
* Remove `Module::deserialize` method.
* Make `Module::serialize` the same format as `Engine::precompile_module`.
* Make `Engine::precompile_module` return a `Vec<u8>`.
* Move the remaining serialization-related code to `serialization.rs`.