Right now the CI test job runs `cargo test --features component-model`
and runs all tests with this feature enabled, which takes a bit of time,
especially on our emulation-based targets. This seems to have become the
critical path, at least in some CI jobs I've been watching. This PR
restricts these runs to only component-model-specific tests when the
feature is enabled.
Our README was starting to show its age; it did not reflect the current
status of Cranelift well with respect to production maturity, current
supported backends, or performance. This PR makes a pass over the
"Status" section to fix that. It also removes some old/out-of-date
details, like `no_std` support (which has bitrotted).
* Add a `VMComponentContext` type and create it on instantiation
This commit fills out the `wasmtime-runtime` crate's support for
`VMComponentContext` and creates it as part of the instantiation
process. This moves a few maps that were temporarily allocated in an
`InstanceData` into the `VMComponentContext` and additionally reads the
canonical options data from there instead.
This type still won't be used in its "full glory" until the lowering of
host functions is completely implemented, however, which will be coming
in a future commit.
* Remove `DerefMut` implementation
* Rebase conflicts
When lifting and lowering for component host imports there won't be a
`Func` available to represent the options and such for the lowering.
That means that the current construction of the `ComponentValue` trait
won't be sufficient for host imports. This commit instead refactors the
traits to instead work with an `Options` type where the `Options` type
can be manufactured from thin air out of the arguments passed to the
component host trampolines.
This new `Options` type is also suitable for storing in `WasmStr` and
`WasmList` to continue to be used to refer back to memory after
these lifted values have been given back to the embedder.
Overall this should largely just be shuffling code around and renaming
`func: &Func` to `options: &Options`.
* Add trampoline compilation support for lowered imports
This commit adds support to the component model implementation for
compiling trampolines suitable for calling host imports. Currently this
is purely just the compilation side of things, modifying the
wasmtime-cranelift crate and additionally filling out a new
`VMComponentOffsets` type (similar to `VMOffsets`). The actual creation
of a `VMComponentContext` is still not performed and will be a
subsequent PR.
Internally though some tests are actually possible with this where we at
least assert that compilation of a component and creation of everything
in-memory doesn't panic or trip any assertions, so some tests are added
here for that as well.
* Fix some test errors
* Implement module imports into components
As a step towards implementing function imports into a component this
commit implements importing modules into a component. This fills out
missing pieces of functionality such as exporting modules as well. The
previous translation code had initial support for translating imported
modules but some of the AST type information was restructured with
feedback from this implementation, namely splitting the
`InstantiateModule` initializer into separate upvar/import variants to
clarify that the item orderings for imports are resolved differently at
runtime.
Much of this commit is also adding infrastructure for any imports at all
into a component. For example a `Linker` type (analagous to
`wasmtime::Linker`) was added here as well. For now this type is quite
limited due to the inability to define host functions (it can only work
with instances and instances-of-modules) but it's enough to start
writing `*.wast` tests which exercise lots of module-related functionality.
* Fix a warning
Rust 1.61 changed the way `Debug` output looks for strings with null
bytes in them, which broke some expected-panic error message matches.
This makes the expectations more generic while still capturing the
important part ("has a null byte").
* Fix double-counting imports in `VMOffsets` calculations
This fixes an oversight in the initial creation of `VMOffsets` for a
module to avoid double-counting imported globals, tables, and memories
for calculating the size of the `VMContext`. Prior to this PR imported
items are accidentally also counted as defined items for sizing
calculations meaning that when a memory is imported but not defined, for
example, the `VMContext` will have a space for an inline
`VMMemoryDefinition` when it doesn't need to.
Auditing where all this relates to it appears that the only issue from
this mistake is that `VMContext` is a bit larger than it would otherwise
need to be. Extra slots are uninitialized memory but nothing in Wasmtime
ever actually accesses the memory either, so it should be harmless to
have extra space here. Nevertheless it seems better to shrink the size
as much as possible to avoid wasting space where we can.
* Fix tests
This commit enhances the processing of components to track all the
dataflow for the processing of `canon.lower`'d functions. At the same
time this fills out a few other missing details to component processing
such as aliasing from some kinds of component instances and similar.
The major changes contained within this are the updates the `info`
submodule which has the AST of component type information. This has been
significantly refactored to prepare for representing lowered functions
and implementing those. The major change is from an `Instantiation` list
to an `Initializer` list which abstractly represents a few other
initialization actions.
This work is split off from my main work to implement component imports
of host functions. This is incomplete in the sense that it doesn't
actually finish everything necessary to define host functions and import
them into components. Instead this is only the changes necessary at the
translation layer (so far). Consequently this commit does not have tests
and also namely doesn't actually include the `VMComponentContext`
initialization and usage. The full body of work is still a bit too messy
to PR just yet so I'm hoping that this is a slimmed-down-enough piece to
adequately be reviewed.
* Split `wasm_to_host_trampoline` into pieces
In the upcoming component model supoprt for imports my plan is to reuse
some of these pieces but not the entirety of the current
`wasm_to_host_trampoline`. In an effort to make that diff smaller this
commit splits up the function preemptively into pieces to get reused
later.
* Delete unused `for_each_libcall` macros
Came across this when working in the object support for cranelift.
* Refactor some object creation details
This commit refactors some of the internals around creating an object
file in the wasmtime-cranelift integration. The old `ObjectBuilder` is
now named `ModuleTextBuilder` and is only used to create the text
section rather than other sections too. This helps maintain the
invariant that the unwind information section is placed directly after
the text section without having an odd API for doing this.
Additionally the unwind information creation is moved externally from
the `ModuleTextBuilder` to a standalone structure. This separate
structure is currently in use in the component model work I'm doing
although I may change that to using the `ModuleTextBuilder` instead. In
any case it seemed nice to encapsulate all of the unwinding information
into one standalone structure.
Finally, the insertion of native debug information has been refactored
to happen in a new `append_dwarf` method to keep all the dwarf-related
stuff together in one place as much as possible.
* Fix a doctest
* Fix a typo
Prior to this PR a major feature of calling component exports (#4039)
was the usage of the `Value<T>` type. This type represents a value
stored in wasm linear memory (the type `T` stored there). This
implementation had a number of drawbacks though:
* When returning a value it's ABI-specific whether you use `T` or
`Value<T>` as a return value. If `T` is represented with one wasm
primitive then you have to return `T`, otherwise the return value must
be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into
the API which is unfortunate.
* The `T` in `Value<T>` was somewhat non-obvious. For example a
wasm-owned string was `Value<String>`. Using `Value<&str>` didn't
work.
* Working with `Value<T>` was unergonomic in the sense that you had to
first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you
could start reading the value.
* Custom structs and enums, while not implemented yet, were planned to
be quite wonky where when you had `Cursor<MyStruct>` then you would
have to import a `CursorMyStructExt` trait generated by a proc-macro
(think a `#[derive]` on the definition of `MyStruct`) which would
enable field accessors, returning cursors of all the fields.
* In general there was no "generic way" to load a `T` from memory. Other
operations like lift/lower/store all had methods in the
`ComponentValue` trait but load had no equivalent.
None of these drawbacks were deal-breakers per-se. When I started
to implement imported functions, though, the `Value<T>` type no longer
worked. The major difference between imports and exports is that when
receiving values from wasm an export returns at most one wasm primitive
where an import can yield (through arguments) up to 16 wasm primitives.
This means that if an export returned a string it would always be
`Value<String>` but if an import took a string as an argument there was
actually no way to represent this with `Value<String>` since the value
wasn't actually stored in memory but rather the pointer/length pair is
received as arguments. Overall this meant that `Value<T>` couldn't be
used for arguments-to-imports, which means that altogether something new
would be required.
This PR completely removes the `Value<T>` and `Cursor<T>` type in favor
of a different implementation. The inspiration from this comes from the
fact that all primitives can be both lifted and lowered into wasm while
it's just some times which can only go one direction. For example
`String` can be lowered into wasm but can't be lifted from wasm. Instead
some sort of "view" into wasm needs to be created during lifting.
One of the realizations from #4039 was that we could leverage
run-time-type-checking to reject static constructions that don't make
sense. For example if an embedder asserts that a wasm function returns a
Rust `String` we can reject that at typechecking time because it's
impossible for a wasm module to ever do that.
The new system of imports/exports in this PR now looks like:
* Type-checking takes into accont an `Op` operation which indicates
whether we'll be lifting or lowering the type. This means that we can
allow the lowering operation for `String` but disallow the lifting
operation. While we can't statically rule out an embedder saying that
a component returns a `String` we can now reject it at runtime and
disallow it from being called.
* The `ComponentValue` trait now sports a new `load` function. This
function will load and instance of `Self` from the byte-array
provided. This is implemented for all types but only ever actually
executed when the `lift` operation is allowed during type-checking.
* The `Lift` associated type is removed since it's now expected that the
lift operation returns `Self`.
* The `ComponentReturn` trait is now no longer necessary and is removed.
Instead returns are bounded by `ComponentValue`. During type-checking
it's required that the return value can be lifted, disallowing, for
example, returning a `String` or `&str`.
* With `Value` gone there's no need to specify the ABI details of the
return value, or whether it's communicated through memory or not. This
means that handling return values through memory is transparently
handled by Wasmtime.
* Validation is in a sense more eagerly performed now. Whenever a value
`T` is loaded the entire immediate structure of `T` is loaded and
validated. Note that recursive through memory validation still does
not happen, so the contents of lists or strings aren't validated, it's
just validated that the pointers are in-bounds.
Overall this felt like a much clearer system to work with and should be
much easier to integrate with imported functions as well. The new
`WasmStr` and `WasmList<T>` types can be used in import arguments and
lifted from the immediate arguments provided rather than forcing them to
always be stored in memory.
* Update wasm proposal support docs
Rename `--enable` flags to simply names and additionally replace module
linking with the component model.
* Fix a typo
This resolves an edge-case where mul.i128 with an input that continues
to be live after the instruction could cause an invalid regalloc
constraint (basically, the regalloc did not previously support an
instruction use and def both being constrained to the same physical reg;
and the "mul" variant used for mul.i128 on x64 was the only instance of
such operands in Cranelift).
Causes two extra move instructions in the mul.i128 filetest, but that's
the price to pay for the slightly more general (works in all cases)
handling of the constraints.
* Add a first-class `StoreId` type to Wasmtime
This commit adds a `StoreId` type to uniquely identify a store
internally within Wasmtime. This hasn't been created previously as it
was never really needed but I've run across a case for its usage in the
component model so I've gone ahead and split out a commit to add this type.
While I was here in this file I opted to improve some other
miscellaneous things as well:
* Notes were added to the `Index` impls that unchecked indexing could be
used in theory if we ever need it one day.
* The check in `Index` for the same store should now be a bit lighter on
codegen where instead of having a `panic!()` in the codegen for each
`Index` there's now an out-of-line version which is `#[cold]`. This
should improve codegen as calling a function with no arguments is
slighly more efficient than calling the panic macro with one string argument.
* An `assert!` guarded with a `cfg(debug_assertions)` was changed to a
`debug_assert!`.
* Allocation of a `StoreId` was refactored to a method on the `StoreId`
itself.
* Review comments
* Fix an ordering
* Change some `VMContext` pointers to `()` pointers
This commit is motivated by my work on the component model
implementation for imported functions. Currently all context pointers in
wasm are `*mut VMContext` but with the component model my plan is to
make some pointers instead along the lines of `*mut VMComponentContext`.
In doing this though one worry I have is breaking what has otherwise
been a core invariant of Wasmtime for quite some time, subtly
introducing bugs by accident.
To help assuage my worry I've opted here to erase knowledge of
`*mut VMContext` where possible. Instead where applicable a context
pointer is simply known as `*mut ()` and the embedder doesn't actually
know anything about this context beyond the value of the pointer. This
will help prevent Wasmtime from accidentally ever trying to interpret
this context pointer as an actual `VMContext` when it might instead be a
`VMComponentContext`.
Overall this was a pretty smooth transition. The main change here is
that the `VMTrampoline` (now sporting more docs) has its first argument
changed to `*mut ()`. The second argument, the caller context, is still
configured as `*mut VMContext` though because all functions are always
called from wasm still. Eventually for component-to-component calls I
think we'll probably "fake" the second argument as the same as the first
argument, losing track of the original caller, as an intentional way of
isolating components from each other.
Along the way there are a few host locations which do actually assume
that the first argument is indeed a `VMContext`. These are valid
assumptions that are upheld from a correct implementation, but I opted
to add a "magic" field to `VMContext` to assert this in debug mode. This
new "magic" field is inintialized during normal vmcontext initialization
and it's checked whenever a `VMContext` is reinterpreted as an
`Instance` (but only in debug mode). My hope here is to catch any future
accidental mistakes, if ever.
* Use a VMOpaqueContext wrapper
* Fix typos
* Change wasm-to-host trampolines to take the values_vec size
This commit changes the ABI of wasm-to-host trampolines, which are
only used right now for functions created with `Func::new`, to pass
along the size of the `values_vec` argument. Previously the trampoline
simply received `*mut ValRaw` and assumed that it was the appropriate
size. By receiving a size as well we can thread through `&mut [ValRaw]`
internally instead of `*mut ValRaw`.
The original motivation for this is that I'm planning to leverage these
trampolines for the component model for host-defined functions. Out of
an abundance of caution of making sure that everything lines up I wanted
to be able to write down asserts about the size received at runtime
compared to the size expected. This overall led me to the desire to
thread this size parameter through on the assumption that it would not
impact performance all that much.
I ran two benchmarks locally from the `call.rs` benchmark and got:
* `sync/no-hook/wasm-to-host - nop - unchecked` - no change
* `sync/no-hook/wasm-to-host - nop-params-and-results - unchecked` - 5%
slower
This is what I roughly expected in that if nothing actually reads the
new parameter (e.g. no arguments) then threading through the parameter
is effectively otherwise free. Otherwise though accesses to the `ValRaw`
storage is now bounds-checked internally in Wasmtime instead of assuming
it's valid, leading to the 5% slowdown (~9.6ns to ~10.3ns). If this
becomes a peformance bottleneck for a particular use case then we should
be fine to remove the bounds checking here or otherwise only bounds
check in debug mode, otherwise I plan on leaving this as-is.
Of particular note this also changes the C API for `*_unchecked`
functions where the C callback now receives the size of the array as
well.
* Add docs
Previously, `listenfd` depended on an old version of the `uuid` crate
which caused cargo deny failures.
https://github.com/mitsuhiko/listenfd/pull/13 upgrades the `uuid`
dependency and a new version of `listenfd` is published. This change
moves to the latest version of `listenfd`.
The `wasmtime-cpp` test suite uncovered an issue where asking for the
frames of a trap would fail immediately after the trap was created. In
addition to fixing this issue I've also updated the documentation of
`Trap::frames` to indicate when it returns `None`.
I was running tests recently and was surprised that the `--test all`
test was taking more than a minute to run when I didn't recall it ever
taking more than a minute historically. A bisection pointed out #4183 as
the cause and after re-reviewing I realized I forgot that we capture
unresolved backtraces by default (and don't actually resolve them
anywhere yet but that's a problem for another day) rather than resolved
backtraces. This means that it's intended that we use
`Backtrace::new_unresolved` instead of `Backtrace::new` in the
traphandlers crate.
The reason that tests were running so slowly is that the tests which
deal with deep stacks (e.g. stack overflow) would take forever in
testing as the Rust-based decoding of DWARF information is egregiously
slow in unoptimized mode. I did discover independently that optimizing
these dependencies makes the tests ~6x faster, but that's irrelevant if
we're not symbolicating in the first place.
* sorta working in runtime
* wasmtime-runtime: get rid of wasm-backtrace feature
* wasmtime: factor to make backtraces recording optional. not configurable yet
* get rid of wasm-backtrace features
* trap tests: now a Trap optionally contains backtrace
* eliminate wasm-backtrace feature
* code review fixes
* ci: no more wasm-backtrace feature
* c_api: backtraces always enabled
* config: unwind required by backtraces and ref types
* plumbed
* test that disabling backtraces works
* code review comments
* fuzzing generator: wasm_backtrace is a runtime config now
* doc fix
* Make `ValRaw` fields private
Force accessing to go through constructors and accessors to localize the
knowledge about little-endian-ness. This is spawned since I made a
mistake in #4039 about endianness.
* Fix some tests
* Component model changes
* components: Implement the ability to call component exports
This commit is an implementation of the typed method of calling
component exports. This is intended to represent the most efficient way
of calling a component in Wasmtime, similar to what `TypedFunc`
represents today for core wasm.
Internally this contains all the traits and implementations necessary to
invoke component exports with any type signature (e.g. arbitrary
parameters and/or results). The expectation is that for results we'll
reuse all of this infrastructure except in reverse (arguments and
results will be swapped when defining imports).
Some features of this implementation are:
* Arbitrary type hierarchies are supported
* The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple
types all map down to the corresponding type in the component model.
* Basic utf-16 string support is implemented as proof-of-concept to show
what handling might look like. This will need further testing and
benchmarking.
* Arguments can be behind "smart pointers", so for example
`&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types.
* Bulk copies from linear memory never happen unless explicitly
instructed to do so.
The goal of this commit is to create the ability to actually invoke wasm
components. This represents what is expected to be the performance
threshold for these calls where it ideally should be optimal how
WebAssembly is invoked. One major missing piece of this is a `#[derive]`
of some sort to generate Rust types for arbitrary `*.wit` types such as
custom records, variants, flags, unions, etc. The current trait impls
for tuples and `Result<T, E>` are expected to have fleshed out most of
what such a derive would look like.
There are some downsides and missing pieces to this commit and method of
calling components, however, such as:
* Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this
compiles down to a `memcpy`-equivalent somewhere but that currently
doesn't happen due to all the bounds checks of copying data into
memory. I have been unsuccessful so far at getting these bounds checks
to be removed.
* There is no finalization at this time (the "post return" functionality
in the canonical ABI). Implementing this should be relatively
straightforward but at this time requires `wasmparser` changes to
catch up with the current canonical ABI.
* There is no guarantee that results of a wasm function will be
validated. As results are consumed they are validated but this means
that if function returns an invalid string which the host doesn't look
at then no trap will be generated. This is probably not the intended
semantics of hosts in the component model.
* At this time there's no support for memory64 memories, just a bunch of
`FIXME`s to get around to. It's expected that this won't be too
onerous, however. Some extra care will need to ensure that the various
methods related to size/alignment all optimize to the same thing they
do today (e.g. constants).
* The return value of a typed component function is either `T` or
`Value<T>`, and it depends on the ABI details of `T` and whether it
takes up more than one return value slot or not. This is an
ABI-implementation detail which is being forced through to the API
layer which is pretty unfortunate. For example if you say the return
value of a function is `(u8, u32)` then it's a runtime type-checking
error. I don't know of a great way to solve this at this time.
Overall I'm feeling optimistic about this trajectory of implementing
value lifting/lowering in Wasmtime. While there are a number of
downsides none seem completely insurmountable. There's naturally still a
good deal of work with the component model but this should be a
significant step up towards implementing and testing the component model.
* Review comments
* Write tests for calling functions
This commit adds a new test file for actually executing functions and
testing their results. This is not written as a `*.wast` test yet since
it's not 100% clear if that's the best way to do that for now (given
that dynamic signatures aren't supported yet). The tests themselves
could all largely be translated to `*.wast` testing in the future,
though, if supported.
Along the way a number of minor issues were fixed with lowerings with
the bugs exposed here.
* Fix an endian mistake
* Fix a typo and the `memory.fill` instruction
RA2 recently removed the need for a dedicated scratch register for
cyclic moves (bytecodealliance/regalloc2#51). This has moderate positive
performance impact on function bodies that were register-constrained, as
it means that one more register is available. In Sightglass, I measured
+5-8% on `blake3-scalar`, at least among current benchmarks.
* Remove unused srcloc in MachReloc
* Remove unused srcloc in MachTrap
* Use `into_iter` on array in bench code to suppress a warning
* Remove unused srcloc in MachCallSite
Previously, the pinned register (enabled by the `enable_pinned_reg`
Cranelift setting and used via the `get_pinned_reg` and `set_pinned_reg`
CLIF ops) was only used when Cranelift was embedded in SpiderMonkey, in
order to support a pinned heap register. SpiderMonkey has its own
calling convention in Cranelift (named after the integration layer,
"Baldrdash").
However, the feature is more general, and should be usable with the
default system calling convention too, e.g. SysV or Windows Fastcall.
This PR fixes the ABI code to properly treat the pinned register as a
globally allocated register -- and hence an implicit input and output to
every function, not saved/restored in the prologue/epilogue -- for SysV
on x86-64 and aarch64, and Fastcall on x86-64.
Fixes#4170.
* Initial skeleton of some component model processing
This commit is the first of what will likely be many to implement the
component model proposal in Wasmtime. This will be structured as a
series of incremental commits, most of which haven't been written yet.
My hope is to make this incremental and over time to make this easier to
review and easier to test each step in isolation.
Here much of the skeleton of how components are going to work in
Wasmtime is sketched out. This is not a complete implementation of the
component model so it's not all that useful yet, but some things you can
do are:
* Process the type section into a representation amenable for working
with in Wasmtime.
* Process the module section and register core wasm modules.
* Process the instance section for core wasm modules.
* Process core wasm module imports.
* Process core wasm instance aliasing.
* Ability to compile a component with core wasm embedded.
* Ability to instantiate a component with no imports.
* Ability to get functions from this component.
This is already starting to diverge from the previous module linking
representation where a `Component` will try to avoid unnecessary
metadata about the component and instead internally only have the bare
minimum necessary to instantiate the module. My hope is we can avoid
constructing most of the index spaces during instantiation only for it
to all ge thrown away. Additionally I'm predicting that we'll need to
see through processing where possible to know how to generate adapters
and where they are fused.
At this time you can't actually call a component's functions, and that's
the next PR that I would like to make.
* Add tests for the component model support
This commit uses the recently updated wasm-tools crates to add tests for
the component model added in the previous commit. This involved updating
the `wasmtime-wast` crate for component-model changes. Currently the
component support there is quite primitive, but enough to at least
instantiate components and verify the internals of Wasmtime are all
working correctly. Additionally some simple tests for the embedding API
have also been added.
* Improve the `wasmtime` crate's README
This commit is me finally getting back to #2688 and improving the README
of the `wasmtime` crate. Currently we have a [pretty drab README][drab]
that doesn't really convey what we want about Wasmtime.
While I was doing this I opted to update the feature list of Wasmtime as
well in the main README (which is mirrored into the crate readme),
namely adding a bullet point for "secure" which I felt was missing
relative to how we think about Wasmtime.
Naturally there's a lot of ways to paint this shed, so feedback is of
course welcome on this! (I'm not the best writer myself)
[drab]: https://crates.io/crates/wasmtime/0.37.0
* Expand the "Fast" bullet a bit more
* Reference the book from the wasmtime crate
* Update more security docs
Also merge the sandboxing security page with the main security page to
avoid the empty security page.
This PR adds a basic *alias analysis*, and optimizations that use it.
This is a "mid-end optimization": it operates on CLIF, the
machine-independent IR, before lowering occurs.
The alias analysis (or maybe more properly, a sort of memory-value
analysis) determines when it can prove a particular memory
location is equal to a given SSA value, and when it can, it replaces any
loads of that location.
This subsumes two common optimizations:
* Redundant load elimination: when the same memory address is loaded two
times, and it can be proven that no intervening operations will write
to that memory, then the second load is *redundant* and its result
must be the same as the first. We can use the first load's result and
remove the second load.
* Store-to-load forwarding: when a load can be proven to access exactly
the memory written by a preceding store, we can replace the load's
result with the store's data operand, and remove the load.
Both of these optimizations rely on a "last store" analysis that is a
sort of coloring mechanism, split across disjoint categories of abstract
state. The basic idea is that every memory-accessing operation is put
into one of N disjoint categories; it is disallowed for memory to ever
be accessed by an op in one category and later accessed by an op in
another category. (The frontend must ensure this.)
Then, given this, we scan the code and determine, for each
memory-accessing op, when a single prior instruction is a store to the
same category. This "colors" the instruction: it is, in a sense, a
static name for that version of memory.
This analysis provides an important invariant: if two operations access
memory with the same last-store, then *no other store can alias* in the
time between that last store and these operations. This must-not-alias
property, together with a check that the accessed address is *exactly
the same* (same SSA value and offset), and other attributes of the
access (type, extension mode) are the same, let us prove that the
results are the same.
Given last-store info, we scan the instructions and build a table from
"memory location" key (last store, address, offset, type, extension) to
known SSA value stored in that location. A store inserts a new mapping.
A load may also insert a new mapping, if we didn't already have one.
Then when a load occurs and an entry already exists for its "location",
we can reuse the value. This will be either RLE or St-to-Ld depending on
where the value came from.
Note that this *does* work across basic blocks: the last-store analysis
is a full iterative dataflow pass, and we are careful to check dominance
of a previously-defined value before aliasing to it at a potentially
redundant load. So we will do the right thing if we only have a
"partially redundant" load (loaded already but only in one predecessor
block), but we will also correctly reuse a value if there is a store or
load above a loop and a redundant load of that value within the loop, as
long as no potentially-aliasing stores happen within the loop.
* Refactor binary-compatible-builds for releases
I was poking around this yesterday and noticed a few things that could
be improved for our release builds:
* The centos container for the x86_64 builds contained a bunch of extra
tooling we no longer need such as python3 and a C++ compiler. Along
with custom toolchain things this could all get removed since the C we
include now is quite simple.
* The aarch64 and s390x cross-compiled builds had relatively high glibc
version requirements compared to the x86_64 build. This was because we
don't use a container to build the cross-compiled binaries. I added
containers here along the lines of the x86_64 build to use an older
glibc to build the release binary to lower our version requirement.
This lower the aarch64 version requirement from glibc 2.28 to 2.17.
Additionally the s390x requirement dropped from 2.28 to 2.16.
* To make the containers a bit easier to read/write I added
`Dockerfile`s for them in a new `ci/docker` directory instead of
hardcoding install commands in JS.
This isn't intended to be a really big change or anything for anyone,
but it's intended to keep our Linux-based builds consistent at least as
best we can.
* Remove temporary change
* Improve documentation around `ResourceLimiter`
This commit takes a pass through the `Store::limiter` method and related
types/traits to improve the documentation with an example and soup up
any recent developments in the documentation.
Closes#4138
* Fix a broken doc link
This is required now that the simd specification has been merged into
the upstream specification, so to run the spec tests this must always be
enabled instead of being left to the whims of the fuzzer about whether
to enable it or not.
* Update the wasm-tools family of crates
This commit updates these crates as used by Wasmtime for the recently
published versions to pull in changes necessary to support the component
model. I've split this out from #4005 to make it clear what's impacted
here and #4005 can simply rebase on top of this to pick up the necessary
changes.
* More test fixes
A new version of rustc was released this morning and we have a few small
breakages on our CI which need fixing:
* A new warning was coming out of the c-api crate about an unneeded
`unsafe` block.
* The panic message of a task in `cranelift-object` needed updating
since the standard library changed how it formats strings with the nul
byte.
I ran across a case in Wasmtime today where a poor error message came
out of the CLI. For example before this commit you would get:
$ cargo run wast --wasm-features component-model foo.wast
error: Invalid value "wast" for '<MODULE>': module name cannot be the same as a subcommand
and now after this commit you get:
$ cargo run wast --wasm-features component-model foo.wast
error: Invalid value "component-model" for '--wasm-features <FEATURE,FEATURE,...>': unsupported WebAssembly feature 'component-model'
I believe this was an accidental regression from #4082 since Wasmtime
0.36.0 produces the error message as expected.
I opted to invert the conditional logic for falling back to the `run`
subcommand. Instead of having a small set of error kinds that print the
first-level error a small set of error kinds are now used to fall back
to the `run` subcommand by default. My hope is that as `ErrorKind` is
extended over time with various sorts of errors of parsing argumenst
this'll be more robust because most of the time we want the CLI
invocation to print out the normal CLI error, it's only in a select few
cases that using `run` is likely to succeed.
* Upgrade to regalloc2 0.1.3.
This pulls in bytecodealliance/regalloc2#49, which slightly improves
codegen in some cases where a safepoint (for reference-typed values)
occurs in the same liverange as a register-constrained use. For
example, in bytecodealliance/wasmtime#3785, an extra move instruction
appeared and a callee-save register was used (necessitating a more
expensive prologue) because of suboptimal splitting heuristics, which
this PR fixes. The updated RA2 heuristics appear to have no measured
downsides in existing benchmarks and improve the manually-observed
codegen issue.
* Update filetests where regalloc2 improvement altered behavior with reftypes.
As per discussion today, when we have a holiday (affecting any regular
attendee), we will push the meeting by a week. This does mean we
sometimes have meetings in contiguous weeks, but given the number of
topics we usually have to discuss, erring on the side of more discussion
time (rather than just canceling) is probably not a bad thing.
For the rest of this calendar year, given an otherwise regular
biweekly-on-Mondays cadence, the holiday conflicts I am aware of are: US
Memorial Day (falls on Mon May 28, pushed meeting to Mon Jun 6); US
Labor Day (falls on Mon Sept 5, pushed to Mon Sept 12). If there are any
other holidays in the below dates, I'm happy to update further!
* Run a callback when the interruption epoch is reached
Adds Store::epoch_deadline_callback. This accepts a callback which, when
invoked, can mutate the store's contents. The callback can either return
an error (in which case we trap) or return a delta which we'll use to
set the new epoch deadline.
* Add a basic test for epoch interruption callback
* Some small nits
- Remove use of &mut in the pattern match
- Return both yields and state from run_and_count_yields_or_trap in
test code and assert on them separately.
- Add a test for trapping on a state failure.
In #4143 we made ISLE compilation part of the normal build flow again,
to avoid the issues with the checked-in source. To make this acceptably
fast, we cut down dependencies of the ISLE compiler, so the "fancy"
error printing is now optional. When not included, it just prints error
messages to stderr in a list. However, this did not include file
locations. It might be nice to have this without enabling the "fancy
printing" and waiting for that to build.
Fortunately most of the plumbing for this was already present (we had it
at one point before switching to miette). This PR adds back locations to
the basic error output. It now looks like:
```
Error building ISLE files: ISLE errors:
src/isa/aarch64/inst.isle:1:1: parse error: Unexpected token Symbol("asdf")
```
* Don't attempt to track the generated clif.isle in cargo
This causes the build script to rerun every time for me.
* Put build script debug messages on stderr instead of stdout
This keeps stdout reserved for cargo build script directives