This changes the following:
mov x0, #4
ldr x0, [x1, #4]
Into:
ldr x0, [x1]
I noticed this pattern (but with #0), in a benchmark.
Copyright (c) 2020, Arm Limited.
This commit fixes an issue with reference-types-using-modules where they
panicked on instantiation if any element segments had an externref null
specified.
* this requires upgrading to wasmparser 0.67.0.
* There are no CLIF side changes because the CLIF `select` instruction is
polymorphic enough.
* on aarch64, there is unfortunately no conditional-move (csel) instruction on
vectors. This patch adds a synthetic instruction `VecCSel` which *does*
behave like that. At emit time, this is emitted as an if-then-else diamond
(4 insns).
* aarch64 implementation is otherwise straightforwards.
In existing MachInst backends, many instructions -- any that can trap or
result in a relocation -- carry `SourceLoc` values in order to propagate
the location-in-original-source to use to describe resulting traps or
relocation errors.
This is quite tedious, and also error-prone: it is likely that the
necessary plumbing will be missed in some cases, and in any case, it's
unnecessarily verbose.
This PR factors out the `SourceLoc` handling so that it is tracked
during emission as part of the `EmitState`, and plumbed through
automatically by the machine-independent framework. Instruction emission
code that directly emits trap or relocation records can query the
current location as necessary. Then we only need to ensure that memory
references and trap instructions, at their (one) emission point rather
than their (many) lowering/generation points, are wired up correctly.
This does have the side-effect that some loads and stores that do not
correspond directly to user code's heap accesses will have unnecessary
but harmless trap metadata. For example, the load that fetches a code
offset from a jump table will have a 'heap out of bounds' trap record
attached to it; but because it is bounds-checked, and will never
actually trap if the lowering is correct, this should be harmless. The
simplicity improvement here seemed more worthwhile to me than plumbing
through a "corresponds to user-level load/store" bit, because the latter
is a bit complex when we allow for op merging.
Closes#2290: though it does not implement a full "metadata" scheme as
described in that issue, this seems simpler overall.
The JIT build_object routine currently rejects building object files
for any big-endian platform. However, most of the object builder
code works fine for either byte order, with the exception of a small
change in the ObjectBuilderTarget::new routine.
This patch adds that change and removes the assert in build_object.
When invoking a WebAssembly routine from Rust code, arguments
are stored into an array of u128, and read from a piece of
generated trampoline code before calling the compiled target
function using the platform ABI calling convention.
The WasmTy/WasmRet routines handle the conversion between Rust
data types and those u128 buffers. This currently works by
in effect converting the Rust object to a u128 and then storing
this u128 into the buffer. The generated trampoline code will
then read an object of appropriate type from the beginning of
that buffer.
This does not work on big-endian platforms, since the above
approach causes the value to be stored into the rightmost
bytes of the u128 buffer, while the trampoline code reads
the leftmost bytes.
This patch fixes the problem by changing WasmTy/WasmRet to
use the leftmost bytes as well, by casting the u128 pointer
to a pointer of the correct type before storing to it (or
reading from it).
(Note that it is not necessary to actually byte-swap the
values since the trampoline code will not treat them like
WebAssembly little-endian memory, but simply access them
in native byte order.)
The GuestType trait is used to access data elements in guest memory.
According to the WebAssembly spec, those are always stored in
little-endian byte order, even on big-endian hosts. Accessing such
elements on big-endian hosts therefore requires byte swapping.
Fixed by adding from_le_bytes / to_le_bytes.
We've generally moved to a model where `InstanceHandle` doesn't hold
ownership of its internals, instead relying on the caller to manage
that. This removes an allocation on the `Func::wrap` path but otherwise
shouldn't have much impact.
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
This commit is intended to be the first of many in implementing the
module linking proposal. At this time this builds on #2059 so it
shouldn't land yet. The goal of this commit is to compile bare-bones
modules which use module linking, e.g. those with nested modules.
My hope with module linking is that almost everything in wasmtime only
needs mild refactorings to handle it. The goal is that all per-module
structures are still per-module and at the top level there's just a
`Vec` containing a bunch of modules. That's implemented currently where
`wasmtime::Module` contains `Arc<[CompiledModule]>` and an index of
which one it's pointing to. This should enable
serialization/deserialization of any module in a nested modules
scenario, no matter how you got it.
Tons of features of the module linking proposal are missing from this
commit. For example instantiation flat out doesn't work, nor does
import/export of modules or instances. That'll be coming as future
commits, but the purpose here is to start laying groundwork in Wasmtime
for handling lots of modules in lots of places.
This will hopefully remove a small thorn in our side with periodic
nightly breakage due to nightly features changing. This commit moves
lightbeam to stable Rust, swapping out `staticvec` for `arrayvec` and
otherwise updating some dependencies (namely `dynasm`) to compile with
stable.
This then also updates CI appropriately to not use a pinned nightly and
instead us a floating `nightly` channel so we can head off any breakage
coming up ASAP.
This commit is a slight refactoring of the `Module` trait and backend in
`cranelift-object`. The goal is to enable parallelization of compilation
when using `cranelift-object`. Currently this is difficult because
`ObjectModule::define_function` requires `&mut self`. This instead
soups up the `define_function_bytes` interface to handle relocations so
compilation can happen externally before defining it in a `Module`. This
also means that `define_function` is now a convenience wrapper around
`define_function_bytes`.
* Make cranelift_codegen::isa::unwind::input public
* Move UnwindCode's common offset field out of the structure
* Make MachCompileResult::unwind_info more generic
* Record initial stack pointer offset
This approach suffers from memory-size bloat during compile time due to the desire to de-duplicate the constants emitted and reduce runtime memory-size. As a first step, though, this provides an end-to-end mechanism for constants to be emitted in the MachBuffer islands.
There has been some confusion over the meaning of the "sign-extend"
(`sext`) and "zero-extend" (`uext`) attributes on parameters and return
values in signatures. According to the three implemented backends, these
attributes indicate that a value narrower than a full register should
always be extended in the way specified. However, they are much more
useful if they mean "extend in this way if the ABI requires extending":
only the ABI backend knows whether or not a particular ABI (e.g., x64
SysV vs. x64 Baldrdash) requires extensions, while only the frontend
(CLIF generator) knows whether or not a value is signed, so the two have
to work in concert.
This is the result of some very helpful discussion in #2354 (thanks to
@uweigand for raising the issue and @bjorn3 for helping to reason about
it).
This change respects the extension attributes in the above way, rather
than unconditionally extending, to avoid potential performance
degradation as we introduce more extension attributes on signatures.
I don't think this has happened in awhile but I've run a `cargo update`
as well as trimming some of the duplicate/older dependencies in
`Cargo.lock` by updating some of our immediate dependencies as well.
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.
The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
Currently the runtime needs to acquire the current stack pointer so it
can set a limit for where if the wasm stack goes below that point it
will abort the wasm code. Acquiring the stack pointer is done in a
brittle way right now which involves looking at the address of what we
hope is an on-stack structure. This turns out to not work at all with
ASan as well.
Instead this commit switches to the `psm` crate which is used by the
Rust compiler team for stack manipulation, namely a coarse version of
segmented stacks to avoid stack overflow in the compiler. We don't need
most of the implementation of `psm`, just the `stack_pointer` function,
but it shouldn't be a burden to bring in!
Closes#2344
After compilation there's actually no need to hold onto the native
signature for a wasm function type, so this commit moves out the
`ir::Signature` value from a `Module` into a separate field that's
deallocated when compilation is finished. This simplifies the
`SignatureRegistry` because it only needs to track wasm functino types
and it also means less work is done for `Func::wrap`.
This change means that running
cargo test --features "enable-peepmatic rebuild-peephole-optimizers"
inside `cranelift/codegen` will rebuild peephole optimizers on not only x86_64
but also aarch64.
This patch implements, for aarch64, the following wasm SIMD extensions.
v128.load32_zero and v128.load64_zero instructions
https://github.com/WebAssembly/simd/pull/237
The changes are straightforward:
* no new CLIF instructions. They are translated into an existing CLIF scalar
load followed by a CLIF `scalar_to_vector`.
* the comment/specification for CLIF `scalar_to_vector` has been changed to
match the actual intended semantics, per consulation with Andrew Brown.
* translation from `scalar_to_vector` to aarch64 `fmov` instruction. This
has been generalised slightly so as to allow both 32- and 64-bit transfers.
* special-case zero in `lower_constant_f128` in order to avoid a
potentially slow call to `Inst::load_fp_constant128`.
* Once "Allow loads to merge into other operations during instruction
selection in MachInst backends"
(https://github.com/bytecodealliance/wasmtime/issues/2340) lands,
we can use that functionality to pattern match the two-CLIF pair and
emit a single AArch64 instruction.
* A simple filetest has been added.
There is no comprehensive testcase in this commit, because that is a separate
repo. The implementation has been tested, nevertheless.
The ModuleFrameInfo and FunctionInfo data structures maintain
a list of ranges via a BTreeMap. The key to that map is one
past the end of the module/function in question. This causes
a problem in the case of immediately adjacent ranges. For
example, if we have two functions occupying adjacent ranges:
A: 0-100
B: 100-200
function A is stored with a key of 100 and B with a key of 200.
Now, when looking up the function associated with address 100,
we'd expect to find B. However the current code:
let (end, func) = info.functions.range(pc..).next()?;
if pc < func.start || *end < pc {
will look up the value 100 in the map and return function A,
which will then fail the pc < func.start check in the next
line, so the result will be failure.
To fix this problem, make sure that the key used when
registering functions or modules is the address of the
last byte, not one past the end.
When performing a function call, the platform ABI may require space
on the stack to hold outgoing arguments and/or return values.
Currently, this is supported via decrementing the stack pointer
before the call and incrementing it afterwards, using the
emit_stack_pre_adjust and emit_stack_post_adjust methods of
ABICaller. However, on some platforms it would be preferable
to just allocate enough space for any call done in the function
in the caller's prologue instead.
This patch adds support to allow back-ends to choose that method.
Instead of calling emit_stack_pre/post_adjust around a call, they
simply call a new accumulate_outgoing_args_size method of
ABICaller instead. This will pass on the required size to the
ABICallee structure of the calling function, which will accumulate
the maximum size required for all function calls.
That accumulated size is then passed to the gen_clobber_save
and gen_clobber_restore functions so they can include the size
in the stack allocation / deallocation that already happens in
the prologue / epilogue code.
Some platform ABIs require i32 values to be zero- or sign-extended
to the full register width. The extension is implemented by the
cranelift codegen backend, but this happens only if the appropriate
"uext" or "sext" attribute is present in the cranelift IR.
For calls to builtin functions, that IR is synthesized by the code
in func_environ.rs -- to ensure correct codegen for the target ABI,
this code needs to add those attributes as necessary.
This patch implements, for aarch64, the following wasm SIMD extensions
i32x4.dot_i16x8_s instruction
https://github.com/WebAssembly/simd/pull/127
It also updates dependencies as follows, in order that the new instruction can
be parsed, decoded, etc:
wat to 1.0.27
wast to 26.0.1
wasmparser to 0.65.0
wasmprinter to 0.2.12
The changes are straightforward:
* new CLIF instruction `widening_pairwise_dot_product_s`
* translation from wasm into `widening_pairwise_dot_product_s`
* new AArch64 instructions `smull`, `smull2` (part of the `VecRRR` group)
* translation from `widening_pairwise_dot_product_s` to `smull ; smull2 ; addv`
There is no testcase in this commit, because that is a separate repo. The
implementation has been tested, nevertheless.
The ABI common code currently passes the fixed frame size to
the gen_clobber_save back-end routine, which is required to
emit code to allocate the required stack space in the prologue.
Similarly, the back-end needs to emit code to de-allocate the
stack in the epilogue. However, at this point the back-end
does not have access to that fixed frame size value any more.
With targets that use a frame pointer, this does not matter,
since de-allocation can be done simply by assigning the frame
pointer back to the stack pointer. However, on targets that
do not use a frame pointer, the frame size is required.
To allow back-ends that option, this patch changes ABI common
code to pass the fixed frame size to get_clobber_restore as
well (the same value as is passed to get_clobber_save).