Tree:
35b750ab9a
cfallin/lucet-pr612-base
fitzgen-patch-1
main
pch/bound_tcp_userland_buffer
pch/bump_wasm_tools_210
pch/cli_wasi_legacy
pch/component_call_hooks
pch/resource_table
pch/resource_table_2
pch/upstream_wave
release-0.32.0
release-0.33.0
release-0.34.0
release-0.35.0
release-0.36.0
release-0.37.0
release-0.38.0
release-0.39.0
release-0.40.0
release-1.0.0
release-10.0.0
release-11.0.0
release-12.0.0
release-13.0.0
release-14.0.0
release-15.0.0
release-16.0.0
release-17.0.0
release-18.0.0
release-19.0.0
release-2.0.0
release-20.0.0
release-21.0.0
release-22.0.0
release-23.0.0
release-24.0.0
release-3.0.0
release-4.0.0
release-5.0.0
release-6.0.0
release-7.0.0
release-8.0.0
release-9.0.0
revert-9191-trevor/upgrade-regalloc
revert-union-find
stable-v0.26
trevor/fuzz-pcc
trevor/hyper-rc4
trevor/io-error-interface
0.2.0
0.3.0
cranelift-v0.31.0
cranelift-v0.32.0
cranelift-v0.33.0
cranelift-v0.34.0
cranelift-v0.35.0
cranelift-v0.36.0
cranelift-v0.37.0
cranelift-v0.39.0
cranelift-v0.40.0
cranelift-v0.41.0
cranelift-v0.42.0
cranelift-v0.43.0
cranelift-v0.43.1
cranelift-v0.44.0
cranelift-v0.45.0
cranelift-v0.46.0
cranelift-v0.46.1
cranelift-v0.60.0
cranelift-v0.61.0
cranelift-v0.62.0
cranelift-v0.69.0
dev
filecheck-v0.0.1
minimum-viable-wasi-proxy-serve
v0.10.0
v0.11.0
v0.12.0
v0.15.0
v0.16.0
v0.17.0
v0.18.0
v0.19.0
v0.2.0
v0.20.0
v0.21.0
v0.22.0
v0.22.1
v0.23.0
v0.24.0
v0.25.0
v0.26.0
v0.26.1
v0.27.0
v0.28.0
v0.29.0
v0.3.0
v0.30.0
v0.31.0
v0.32.0
v0.32.1
v0.33.0
v0.33.1
v0.34.0
v0.34.1
v0.34.2
v0.35.0
v0.35.1
v0.35.2
v0.35.3
v0.36.0
v0.37.0
v0.38.0
v0.38.1
v0.38.2
v0.38.3
v0.39.0
v0.39.1
v0.4.0
v0.40.0
v0.40.1
v0.6.0
v0.8.0
v0.9.0
v1.0.0
v1.0.1
v1.0.2
v10.0.0
v10.0.1
v10.0.2
v11.0.0
v11.0.1
v11.0.2
v12.0.0
v12.0.1
v12.0.2
v13.0.0
v13.0.1
v14.0.0
v14.0.1
v14.0.2
v14.0.3
v14.0.4
v15.0.0
v15.0.1
v16.0.0
v17.0.0
v17.0.1
v17.0.2
v17.0.3
v18.0.0
v18.0.1
v18.0.2
v18.0.3
v18.0.4
v19.0.0
v19.0.1
v19.0.2
v2.0.0
v2.0.1
v2.0.2
v20.0.0
v20.0.1
v20.0.2
v21.0.0
v21.0.1
v22.0.0
v23.0.0
v23.0.1
v23.0.2
v24.0.0
v3.0.0
v3.0.1
v4.0.0
v4.0.1
v5.0.0
v5.0.1
v6.0.0
v6.0.1
v6.0.2
v7.0.0
v7.0.1
v8.0.0
v8.0.1
v9.0.0
v9.0.1
v9.0.2
v9.0.3
v9.0.4
${ noResults }
8 Commits (35b750ab9a9c4e70e80c4a795e9f51d9f83ee6fc)
Author | SHA1 | Message | Date |
---|---|---|---|
Saúl Cabrera |
52524d258c
|
Expose `TrapCode::Interrupt` on epoch based interruption (#4105)
|
3 years ago |
Alex Crichton |
c22033bf93
|
Delete historical interruptable support in Wasmtime (#3925)
* Delete historical interruptable support in Wasmtime This commit removes the `Config::interruptable` configuration along with the `InterruptHandle` type from the `wasmtime` crate. The original support for adding interruption to WebAssembly was added pretty early on in the history of Wasmtime when there was no other method to prevent an infinite loop from the host. Nowadays, however, there are alternative methods for interruption such as fuel or epoch-based interruption. One of the major downsides of `Config::interruptable` is that even when it's not enabled it forces an atomic swap to happen when entering WebAssembly code. This technically could be a non-atomic swap if the configuration option isn't enabled but that produces even more branch-y code on entry into WebAssembly which is already something we try to optimize. Calling into WebAssembly is on the order of a dozens of nanoseconds at this time and an atomic swap, even uncontended, can add up to 5ns on some platforms. The main goal of this PR is to remove this atomic swap on entry into WebAssembly. This is done by removing the `Config::interruptable` field entirely, moving all existing consumers to epochs instead which are suitable for the same purposes. This means that the stack overflow check is no longer entangled with the interruption check and perhaps one day we could continue to optimize that further as well. Some consequences of this change are: * Epochs are now the only method of remote-thread interruption. * There are no more Wasmtime traps that produces the `Interrupted` trap code, although we may wish to move future traps to this so I left it in place. * The C API support for interrupt handles was also removed and bindings for epoch methods were added. * Function-entry checks for interruption are a tiny bit less efficient since one check is performed for the stack limit and a second is performed for the epoch as opposed to the `Config::interruptable` style of bundling the stack limit and the interrupt check in one. It's expected though that this is likely to not really be measurable. * The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`. |
3 years ago |
Alex Crichton |
7a1b7cdf92
|
Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread. |
3 years ago |
Alex Crichton |
2697a18d2f
|
Redo the statically typed `Func` API (#2719)
* Redo the statically typed `Func` API This commit reimplements the `Func` API with respect to statically typed dispatch. Previously `Func` had a `getN` and `getN_async` family of methods which were implemented for 0 to 16 parameters. The return value of these functions was an `impl Fn(..)` closure with the appropriate parameters and return values. There are a number of downsides with this approach that have become apparent over time: * The addition of `*_async` doubled the API surface area (which is quite large here due to one-method-per-number-of-parameters). * The [documentation of `Func`][old-docs] are quite verbose and feel "polluted" with all these getters, making it harder to understand the other methods that can be used to interact with a `Func`. * These methods unconditionally pay the cost of returning an owned `impl Fn` with a `'static` lifetime. While cheap, this is still paying the cost for cloning the `Store` effectively and moving data into the closed-over environment. * Storage of the return value into a struct, for example, always requires `Box`-ing the returned closure since it otherwise cannot be named. * Recently I had the desire to implement an "unchecked" path for invoking wasm where you unsafely assert the type signature of a wasm function. Doing this with today's scheme would require doubling (again) the API surface area for both async and synchronous calls, further polluting the documentation. The main benefit of the previous scheme is that by returning a `impl Fn` it was quite easy and ergonomic to actually invoke the function. In practice, though, examples would often have something akin to `.get0::<()>()?()?` which is a lot of things to interpret all at once. Note that `get0` means "0 parameters" yet a type parameter is passed. There's also a double function invocation which looks like a lot of characters all lined up in a row. Overall, I think that the previous design is starting to show too many cracks and deserves a rewrite. This commit is that rewrite. The new design in this commit is to delete the `getN{,_async}` family of functions and instead have a new API: impl Func { fn typed<P, R>(&self) -> Result<&Typed<P, R>>; } impl Typed<P, R> { fn call(&self, params: P) -> Result<R, Trap>; async fn call_async(&self, params: P) -> Result<R, Trap>; } This should entirely replace the current scheme, albeit by slightly losing ergonomics use cases. The idea behind the API is that the existence of `Typed<P, R>` is a "proof" that the underlying function takes `P` and returns `R`. The `Func::typed` method peforms a runtime type-check to ensure that types all match up, and if successful you get a `Typed` value. Otherwise an error is returned. Once you have a `Typed` then, like `Func`, you can either `call` or `call_async`. The difference with a `Typed`, however, is that the params/results are statically known and hence these calls can be much more efficient. This is a much smaller API surface area from before and should greatly simplify the `Func` documentation. There's still a problem where `Func::wrapN_async` produces a lot of functions to document, but that's now the sole offender. It's a nice benefit that the statically-typed-async verisons are now expressed with an `async` function rather than a function-returning-a-future which makes it both more efficient and easier to understand. The type `P` and `R` are intended to either be bare types (e.g. `i32`) or tuples of any length (including 0). At this time `R` is only allowed to be `()` or a bare `i32`-style type because multi-value is not supported with a native ABI (yet). The `P`, however, can be any size of tuples of parameters. This is also where some ergonomics are lost because instead of `f(1, 2)` you now have to write `f.call((1, 2))` (note the double-parens). Similarly `f()` becomes `f.call(())`. Overall I feel that this is a better tradeoff than before. While not universally better due to the loss in ergonomics I feel that this design is much more flexible in terms of what you can do with the return value and also understanding the API surface area (just less to take in). [old-docs]: https://docs.rs/wasmtime/0.24.0/wasmtime/struct.Func.html#method.get0 * Rename Typed to TypedFunc * Implement multi-value returns through `Func::typed` * Fix examples in docs * Fix some more errors * More test fixes * Rebasing and adding `get_typed_func` * Updating tests * Fix typo * More doc tweaks * Tweak visibility on `Func::invoke` * Fix tests again |
4 years ago |
Peter Huene |
54c07d8f16
|
Implement shared host functions. (#2625)
* Implement defining host functions at the Config level. This commit introduces defining host functions at the `Config` rather than with `Func` tied to a `Store`. The intention here is to enable a host to define all of the functions once with a `Config` and then use a `Linker` (or directly with `Store::get_host_func`) to use the functions when instantiating a module. This should help improve the performance of use cases where a `Store` is short-lived and redefining the functions at every module instantiation is a noticeable performance hit. This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi` type. The new method adds the WASI functions to the given config as host functions. This commit adds context functions to `Store`: `get` to get a context of a particular type and `set` to set the context on the store. For safety, `set` cannot replace an existing context value of the same type. `Wasi::set_context` was added to set the WASI context for a `Store` when using `Wasi::add_to_config`. * Add `Config::define_host_func_async`. * Make config "async" rather than store. This commit moves the concept of "async-ness" to `Config` rather than `Store`. Note: this is a breaking API change for anyone that's already adopted the new async support in Wasmtime. Now `Config::new_async` is used to create an "async" config and any `Store` associated with that config is inherently "async". This is needed for async shared host functions to have some sanity check during their execution (async host functions, like "async" `Func`, need to be called with the "async" variants). * Update async function tests to smoke async shared host functions. This commit updates the async function tests to also smoke the shared host functions, plus `Func::wrap0_async`. This also changes the "wrap async" method names on `Config` to `wrap$N_host_func_async` to slightly better match what is on `Func`. * Move the instance allocator into `Engine`. This commit moves the instantiated instance allocator from `Config` into `Engine`. This makes certain settings in `Config` no longer order-dependent, which is how `Config` should ideally be. This also removes the confusing concept of the "default" instance allocator, instead opting to construct the on-demand instance allocator when needed. This does alter the semantics of the instance allocator as now each `Engine` gets its own instance allocator rather than sharing a single one between all engines created from a configuration. * Make `Engine::new` return `Result`. This is a breaking API change for anyone using `Engine::new`. As creating the pooling instance allocator may fail (likely cause is not enough memory for the provided limits), instead of panicking when creating an `Engine`, `Engine::new` now returns a `Result`. * Remove `Config::new_async`. This commit removes `Config::new_async` in favor of treating "async support" as any other setting on `Config`. The setting is `Config::async_support`. * Remove order dependency when defining async host functions in `Config`. This commit removes the order dependency where async support must be enabled on the `Config` prior to defining async host functions. The check is now delayed to when an `Engine` is created from the config. * Update WASI example to use shared `Wasi::add_to_config`. This commit updates the WASI example to use `Wasi::add_to_config`. As only a single store and instance are used in the example, it has no semantic difference from the previous example, but the intention is to steer users towards defining WASI on the config and only using `Wasi::add_to_linker` when more explicit scoping of the WASI context is required. |
4 years ago |
Yury Delendik |
15c68f2cc1
|
Disconnects `Store` state fields from `Compiler` (#1761)
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler * CompiledModule holds CodeMemory and GdbJitImageRegistration * Store keeps track of its JIT code * Makes "jit_int.rs" stuff Send+Sync * Adds the threads example. |
4 years ago |
Leonardo Yvens |
0b3b9c298e
|
impl From<anyhow::Error> for Trap (#1753)
* From<anyhow::Error> for Trap * Add TrapReason::Error * wasmtime: Improve Error to Trap conversion * Remove Trap::message |
5 years ago |
Alex Crichton |
c9a0ba81a0
|
Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow This commit is a relatively large change for wasmtime with two main goals: * Primarily this enables interrupting executing wasm code with a trap, preventing infinite loops in wasm code. Note that resumption of the wasm code is not a goal of this commit. * Additionally this commit reimplements how we handle stack overflow to ensure that host functions always have a reasonable amount of stack to run on. This fixes an issue where we might longjmp out of a host function, skipping destructors. Lots of various odds and ends end up falling out in this commit once the two goals above were implemented. The strategy for implementing this was also lifted from Spidermonkey and existing functionality inside of Cranelift. I've tried to write up thorough documentation of how this all works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are. A brief summary of how this works is that each function and each loop header now checks to see if they're interrupted. Interrupts and the stack overflow check are actually folded into one now, where function headers check to see if they've run out of stack and the sentinel value used to indicate an interrupt, checked in loop headers, tricks functions into thinking they're out of stack. An interrupt is basically just writing a value to a location which is read by JIT code. When interrupts are delivered and what triggers them has been left up to embedders of the `wasmtime` crate. The `wasmtime::Store` type has a method to acquire an `InterruptHandle`, where `InterruptHandle` is a `Send` and `Sync` type which can travel to other threads (or perhaps even a signal handler) to get notified from. It's intended that this provides a good degree of flexibility when interrupting wasm code. Note though that this does have a large caveat where interrupts don't work when you're interrupting host code, so if you've got a host import blocking for a long time an interrupt won't actually be received until the wasm starts running again. Some fallout included from this change is: * Unix signal handlers are no longer registered with `SA_ONSTACK`. Instead they run on the native stack the thread was already using. This is possible since stack overflow isn't handled by hitting the guard page, but rather it's explicitly checked for in wasm now. Native stack overflow will continue to abort the process as usual. * Unix sigaltstack management is now no longer necessary since we don't use it any more. * Windows no longer has any need to reset guard pages since we no longer try to recover from faults on guard pages. * On all targets probestack intrinsics are disabled since we use a different mechanism for catching stack overflow. * The C API has been updated with interrupts handles. An example has also been added which shows off how to interrupt a module. Closes #139 Closes #860 Closes #900 * Update comment about magical interrupt value * Store stack limit as a global value, not a closure * Run rustfmt * Handle review comments * Add a comment about SA_ONSTACK * Use `usize` for type of `INTERRUPTED` * Parse human-readable durations * Bring back sigaltstack handling Allows libstd to print out stack overflow on failure still. * Add parsing and emission of stack limit-via-preamble * Fix new example for new apis * Fix host segfault test in release mode * Fix new doc example |
5 years ago |