This commit refactors the internals of `wasmtime_runtime::SharedMemory`
a bit to expose the necessary functions to invoke from the
`wasmtime::SharedMemory` layer. Notably some items are moved out of the
`RwLock` from prior, such as the type and the `VMMemoryDefinition`.
Additionally the organization around the `atomic_*` methods has been
redone to ensure that the `wasmtime`-layer abstraction has a single
method to call into which everything else uses as well.
* Update release date of Wasmtime 3.0.0
* Update release date for 3.0.0
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
From the documentation of `CondVar::wait_timeout`:
> The semantics of this function are equivalent to wait except that the thread
> will be blocked for roughly no longer than `dur`. This method should not be
> used for precise timing due to anomalies such as preemption or platform
> differences that might not cause the maximum amount of time waited to be
> precisely `dur`.
Therefore, go to sleep again, if the thread has not slept long enough.
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
* bench: add more WASI benchmarks
This follows up on #5274 to add several more scenarios with which to
benchmark WASI performance:
- `open-file.wat`: opens and closes a file
- `read-file.wat`: opens a file, reads 4K bytes from it, then closes it
- `read-dir.wat`: reads a directory's entries
Each benchmark is hand-crafted WAT to more clearly control what WASI
calls are made. As with #5274, these modules' sole entry point takes a
parameter indicating the number of iterations to run in order to use
`criterion`'s `iter_custom` feature.
* fix: reduce expected size of directory entries
* Cranelift: Define `heap_load` and `heap_store` instructions
* Cranelift: Implement interpreter support for `heap_load` and `heap_store`
* Cranelift: Add a suite runtests for `heap_{load,store}`
There are so many knobs we can twist for heaps and I wanted to exhaustively test
all of them, so I wrote a script to generate the tests. I've checked in the
script in case we want to make any changes in the future, but I don't think it
is worth adding this to CI to check that scripts are up to date or anything like
that.
* Review feedback
* feat: implement memory.atomic.notify,wait32,wait64
Added the parking_spot crate, which provides the needed registry for the
operations.
Signed-off-by: Harald Hoyer <harald@profian.com>
* fix: change trap message for HeapMisaligned
The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add test for atomic wait on non-shared memory
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests/spec_testsuite/proposals/threads
without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add atomics_notify.wast
checking that notify with 0 waiters returns 0 on shared and non-shared
memory.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests for atomic wait on shared memory
- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
It seems they were mistakenly added to the `wasmtime_valunion` union whereas it is actually the `ValRaw` Rust type (represented by `wasmtime_val_raw`) that is affected by the change.
This commit replaces `wasmtime_environ::TrapCode` with `wasmtime::Trap`.
This is possible with past refactorings which slimmed down the `Trap`
definition in the `wasmtime` crate to a simple `enum`. This means that
there's one less place that all the various trap opcodes need to be
listed in Wasmtime.
In #5174 we decided it doesn't make sense for a rule to have a
bind-pattern at the root of its left-hand side. There's no Rust value
corresponding to the root value of such a term, because it actually
represents a function declaration with one or more arguments.
This commit takes that to its logical conclusion.
`sema::Rule` previously had an `lhs` field whose value must always be a
`Pattern::Term` variant, and anyone using that structure had to deal
with the possibility of finding the wrong variant there.
Now the relevant fields from that variant are stored directly in `Rule`
instead. Also, the (tiny!) portion of `translate_pattern` which applied
when the pattern was the root term is now inlined in `collect_rules`.
Because `translate_pattern` no longer has to special-case the root term,
we can delete its `rule_term` and `is_root` arguments. That brings it
down to a more manageable four arguments, which means many calls fit on
one line now.
This hopefully will speed things up slightly since ASan can add a chunk
to the compile time. Unsure if this will actually help, though, so let's
find out!
As it turns out, that distinction was not necessary for this
representation. Removing it eliminates some complexity around wrapping
expressions as bindings and vice versa. It also clears up some confusion
about which category to put certain constructs in (arguments and
extractors) by refusing to have different categories.
While I was writing this patch I also realized that `add_match_variant`
and `normalize_equivalence_classes` both need to do fundamentally the
same things with enum variants, so I refactored them to share code and
make their relationship clearer.
Finally, I reviewed all the comments in this file and fixed some places
where they could be more clear.
* convert wasi-common from defining its own error to using wiggle trappable error
* wasi-common impl crates: switch error strategy
* wasmtime-wasi: error is trappable, and no longer requires UserErrorConversion
* docs
* typo
* readdir: windows fixes
* fix windows scheduler errors
fun fact! the Send and Recv errors here that just had a `.context` on
them were previously not being captured in the downcasting either. They
need to be traps, and would have ended up that way by ommission, but
you'd never actually know that by reading the code!
* Shrink the size of SigData in Cranelift
* Update cranelift/codegen/src/machinst/abi.rs
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Change ret arg length to u16
* Add test
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Avoid naming %rcx as written by the CoffTlsGetAddr pseudo-instruction in the x64 backend, and instead emit a fixed-def constraint for a fresh VReg and %rcx.
Remove some unnecessary moves in the x64 gen_memcpy implementation -- the call instruction that's generated will already constrain the args to those registers.
* Add a new "trappable" mode for wiggle to make an error type
start refactoring how errors are generated and configured
put a pin in this - you can now configure a generated error
but i need to go fix Names
Names is no longer a struct, rt is hardcoded to wiggle
rest of fixes to pass tests
its called a trappable error now
don't generate UserErrorConversion trait if empty
mention in macro docs
* undo omitting the user error conversion trait when empty
* Remove explicit `S` type parameters
This commit removes the explicit `S` type parameter on `Func::typed` and
`Instance::get_typed_func`. Historical versions of Rust required that
this be a type parameter but recent rustcs support a mixture of explicit
type parameters and `impl Trait`. This removes, at callsites, a
superfluous `, _` argument which otherwise never needs specification.
* Fix mdbook examples
In order to properly understand the impact of providing thread-safe
implmentations of WASI contexts (#5235), we need benchmarks that measure
the current performance of WASI calls using Wiggle. This change adds
several common WASI scenarios as WAT files (see `benches/wasi/*.wat`)
and benchmarks them with `criterion`. Using `criterion`'s `iter_custom`,
the WAT file runs the desired number of benchmark iterations internally
and the total duration of the runs is divided to get the average time
for each loop iteration.
Why WAT? When compiling these benchmarks from Rust to `wasm32-wasi`, the
output files are large, contain other WASI imports than the desired
ones, and overall it is difficult to tell if we are measuring what we
expect. By hand-writing the WAT, it is (slightly) more clear what each
benchmark is doing.
* cranelift: Cleanup `fdemote`/`fpromote` tests
* cranelift: Fix `fdemote`/`fpromote` instruction docs
The verifier fails if the input and output types are the same
for these instructions
* cranelift: Fix `fdemote`/`fpromote` in the interpreter
* fuzzgen: Add `fdemote`/`fpromote`
`wiggle` looks for an exported `Memory` named `"memory"` to use for its
guest slices. This change allows it to use a `SharedMemory` if this is
the kind of memory used for the export.
It is `unsafe` to use shared memory in Wiggle because of broken Rust
guarantees: previously, Wiggle could hand out slices to WebAssembly
linear memory that could be concurrently modified by some other thread.
With the introduction of Wiggle's new `UnsafeGuestSlice` (#5225, #5229,
#5264), Wiggle should now correctly communicate its guarantees through
its API.
We can encode more constants into 12-bit immediates if we do the following
rewrite for comparisons with odd constants:
A >= B + 1
==> A - 1 >= B
==> A > B
This commit refactors the internals of `wiggle` to have fewer raw pointers and more liberally use `&[UnsafeCell<_>]`. The purpose of this refactoring is to more strictly thread through lifetime information throughout the crate to avoid getting it wrong. Additionally storing `UnsafeCell<T>` at rest pushes the unsafety of access to the leaves of modifications where Rust safety guarantees are upheld. Finally this provides what I believe is a safer internal representation of `WasmtimeGuestMemory` since it technically holds onto `&mut [u8]` un-soundly as other `&mut T` pointers are handed out.
Additionally generated `GuestTypeTransparent` impls in the `wiggle` macro were removed because they are not safe for shared memories as-is and otherwise aren't needed for WASI today. The trait has been updated to indicate that all bit patterns must be valid in addition to having the same representation on the host as in the guest to accomodate this.
* wiggle: adapt Wiggle strings for shared use
This is an extension of #5229 for the `&str` and `&mut str` types. As
documented there, we are attempting to maintain Rust guarantees for
slices that Wiggle hands out in the presence of WebAssembly shared
memory, in which case multiple threads could be modifying the underlying
data of the slice.
This change changes the API of `GuestPtr` to return an `Option` which is
`None` when attempting to view the WebAssembly data as a string and the
underlying WebAssembly memory is shared. This reuses the
`UnsafeGuestSlice` structure from #5229 to do so and appropriately marks
the region as borrowed in Wiggle's manual borrow checker. Each original
call site in this project's WASI implementations is fixed up to `expect`
that a non-shared memory is used. (Note that I can find no uses of
`GuestStrMut` in the WASI implementations).
* wiggle: make `GuestStr*` containers wrappers of `GuestSlice*`
This change makes it possible to reuse the underlying logic in
`UnsafeGuestSlice` and the `GuestSlice*` implementations to continue to
expose the `GuestStr` and `GuestStrMut` types. These types now are
simple wrappers of their `GuestSlice*` variant. The UTF-8 validation
that distinguished `GuestStr*` now lives in the `TryFrom`
implementations for each type.
* cranelift-isle: New IR and revised overlap checks
* Improve error reporting
* Avoid "unused argument" warnings a nicer way
* Remove unused fields
* Minimize diff and "fix" error handling
I had tried to use Miette "right" and made things worse somehow. Among
other changes, revert all my changes to unrelated parts of `error.rs`
and `error_miette.rs`.
* Review comments: Rename "unmatchable" to "unreachable"
* Review comments: newtype wrappers, not type aliases
* Review comments: more comments on overlap checks
* Review comments: Clarify `normalize_equivalence_classes`
* Review comments: use union-find instead of linked list
This saves about 50 lines of code in the trie_again module. The
union-find implementation is about twice as long as that, counting
comments and doc-tests, but that's a worth-while tradeoff.
However, this makes `normalize_equivalence_classes` slower, because now
finding all elements of an equivalence class takes time linear in the
total size of all equivalence classes. If that ever turns out to be a
problem in practice we can find some way to optimize `remove_set_of`.
* Review comments: Hide constraints HashMap
We want to enforce that consumers of this representation can't observe
non-deterministic ordering in any of its public types.
* Review comments: Normalize equivalence classes incrementally
I'm not sure whether this is a good idea. It doesn't make the logic
particularly simpler, and I think it will do more work if three or more
binding sites with enum-variant constraints get set equal to each other.
* More comments and other clarifications
* Revert "Review comments: Normalize equivalence classes incrementally"
* Even more comments
* wiggle: adapt Wiggle guest slices for `unsafe` shared use
When multiple threads can concurrently modify a WebAssembly shared
memory, the underlying data for a Wiggle `GuestSlice` and
`GuestSliceMut` could change due to access from other threads. This
breaks Rust guarantees when `&[T]` and `&mut [T]` slices are handed out.
This change modifies `GuestPtr` to make `as_slice` and `as_slice_mut`
return an `Option` which is `None` when the underlying WebAssembly
memory is shared.
But WASI implementations still need access to the underlying WebAssembly
memory, both to read to it and write from it. This change adds new APIs:
- `GuestPtr::to_vec` copies the bytes from WebAssembly memory (from
which we can safely take a `&[T]`)
- `GuestPtr::as_unsafe_slice_mut` returns a wrapper `struct` from which
we can `unsafe`-ly return a mutable slice (users must accept the
unsafety of concurrently modifying a `&mut [T]`)
This approach allows us to maintain Wiggle's borrow-checking
infrastructure, which enforces the guarantee that Wiggle will not modify
overlapping regions, e.g. This is important because the underlying
system calls may expect this. Though other threads may modify the same
underlying region, this is impossible to prevent; at least Wiggle will
not be able to do so.
Finally, the changes to Wiggle's API are propagated to all WASI
implementations in Wasmtime. For now, code locations that attempt to get
a guest slice will panic if the underlying memory is shared. Note that
Wiggle is not enabled for shared memory (that will come later in
something like #5054), but when it is, these panics will be clear
indicators of locations that must be re-implemented in a thread-safe
way.
* review: remove double cast
* review: refactor to include more logic in 'UnsafeGuestSlice'
* review: add reference to #4203
* review: link all thread-safe WASI fixups to #5235
* fix: consume 'UnsafeGuestSlice' during conversion to safe versions
* review: remove 'as_slice' and 'as_slice_mut'
* review: use 'as_unsafe_slice_mut' in 'to_vec'
* review: add `UnsafeBorrowResult`