* Add `only_interfaces` and `with` to the `bindgen!` macro.
* Add a version of the empty_error test for `only_interfaces` and `with`
* Review feedback
* Add docs
* Add a limits and trap-on-OOM options to the CLI
This commit adds new options to the `wasmtime` CLI to control the
`Store::limiter` behavior at runtime. This enables artificially
restriction the memory usage of the wasm instance, for example.
Additionally a new option is added to `StoreLimits` to force a trap on
growth failure. This is intended to help quickly debug modules with
backtraces if OOM is happening, or even diagnosing if OOM is happening
in the first place.
* Fix compile of fuzzing oracle
* Adding in trampoline compiling method for ISA
* Adding support for indirect call to memory address
* Refactoring frame to externalize defined locals, so it removes WASM depedencies in trampoline case
* Adding initial version of trampoline for testing
* Refactoring trampoline to be re-used by other architectures
* Initial wiring for winch with wasmtime
* Add a Wasmtime CLI option to select `winch`
This is effectively an option to select the `Strategy` enumeration.
* Implement `Compiler::compile_function` for Winch
Hook this into the `TargetIsa::compile_function` hook as well. Currently
this doesn't take into account `Tunables`, but that's left as a TODO for
later.
* Filling out Winch append_code method
* Adding back in changes from previous branch
Most of these are a WIP. It's missing trampolines for x64, but a basic
one exists for aarch64. It's missing the handling of arguments that
exist on the stack.
It currently imports `cranelift_wasm::WasmFuncType` since it's what's
passed to the `Compiler` trait. It's a bit awkward to use in the
`winch_codegen` crate since it mostly operates on `wasmparser` types.
I've had to hack in a conversion to get things working. Long term, I'm
not sure it's wise to rely on this type but it seems like it's easier on
the Cranelift side when creating the stub IR.
* Small API changes to make integration easier
* Adding in new FuncEnv, only a stub for now
* Removing unneeded parts of the old PoC, and refactoring trampoline code
* Moving FuncEnv into a separate file
* More comments for trampolines
* Adding in winch integration tests for first pass
* Using new addressing method to fix stack pointer error
* Adding test for stack arguments
* Only run tests on x86 for now, it's more complete for winch
* Add in missing documentation after rebase
* Updating based on feedback in draft PR
* Fixing formatting on doc comment for argv register
* Running formatting
* Lock updates, and turning on winch feature flags during tests
* Updating configuration with comments to no longer gate Strategy enum
* Using the winch-environ FuncEnv, but it required changing the sig
* Proper comment formatting
* Removing wasmtime-winch from dev-dependencies, adding the winch feature makes this not necessary
* Update doc attr to include winch check
* Adding winch feature to doc generation, which seems to fix the feature error in CI
* Add the `component-model` feature to the cargo doc invocation in CI
To match the metadata used by the docs.rs invocation when building docs.
* Add a comment clarifying the usage of `component-model` for docs.rs
* Correctly order wasmtime-winch and winch-environ in the publish script
* Ensure x86 test dependencies are included in cfg(target_arch)
* Further constrain Winch tests to x86_64 _and_ unix
---------
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>
* Fix export translation for components.
Exports in the component model cause a new index to be added to the index space
of the item being exported.
This commit updates component translation so that translation of component
export sections properly updates internal lists representing those index
spaces.
* Code review feedback.
This commit changes the signature of the `Store::epoch_deadline_callback` to
take in `StoreContextMut` instead of a mutable reference to the store's data.
This is useful in cases in which the callback definition needs access to the
Store to be able to use other methods that take in `AsContext`/`AsContextMut`,
like for example `WasmtimeBacktrace::capture`
* Add a `MachBuffer::defer_trap` method
This commit adds a new method to `MachBuffer` to defer trap opcodes to
the end of a function in a similar manner to how constants are deferred
to the end of the function. This is useful for backends which frequently
use `TrapIf`-style opcodes. Currently a jump is emitted which skips the
next instruction, a trap, and then execution continues normally. While
there isn't any pressing problem with this construction the trap opcode
is in the middle of the instruction stream as opposed to "off on the
side" despite rarely being taken.
With this method in place all the backends (except riscv64 since I
couldn't figure it out easily enough) have a new lowering of their
`TrapIf` opcode. Now a trap is deferred, which returns a label, and then
that label is jumped to when executing the trap. A fixup is then
recorded in `MachBuffer` to get patched later on during emission, or at
the end of the function. Subsequently all `TrapIf` instructions
translate to a single branch plus a single trap at the end of the
function.
I've additionally further updated some more lowerings in the x64 backend
which were explicitly using traps to instead use `TrapIf` where
applicable to avoid jumping over traps mid-function. Other backends
didn't appear to have many jump-over-the-next-trap patterns.
Lots of tests have had their expectations updated here which should
reflect all the traps being sunk to the end of functions.
* Print trap code on all platforms
* Emit traps before constants
* Preserve source location information for traps
* Fix test expectations
* Attempt to fix s390x
The MachBuffer was registering trap codes with the first byte of the
trap, but the SIGILL handler was expecting it to be registered with the
last byte of the trap. Exploit that SIGILL is always represented with a
2-byte instruction and always march 2-backwards for SIGILL, continuing
to march backwards 1 byte for SIGFPE-generating instructions.
* Back out s390x changes
* Back out more s390x bits
* Review comments
* cranelift-wasm: Add a bounds-checking optimization for dynamic memories and guard pages
This is a new special case for when we know that there are enough guard pages to
cover the memory access's offset and access size.
The precise should-we-trap condition is
index + offset + access_size > bound
However, if we instead check only the partial condition
index > bound
then the most out of bounds that the access can be, while that partial check
still succeeds, is `offset + access_size`.
However, when we have a guard region that is at least as large as `offset +
access_size`, we can rely on the virtual memory subsystem handling these
out-of-bounds errors at runtime. Therefore, the partial `index > bound` check is
sufficient for this heap configuration.
Additionally, this has the advantage that a series of Wasm loads that use the
same dynamic index operand but different static offset immediates -- which is a
common code pattern when accessing multiple fields in the same struct that is in
linear memory -- will all emit the same `index > bound` check, which we can GVN.
* cranelift: Add WAT tests for accessing dynamic memories with the same index but different offsets
The bounds check comparison is GVN'd but we still branch on values we should
know will always be true if we get this far in the code. This is actual `br_if`s
in the non-Spectre code and `select_spectre_guard`s that we should know will
always go a certain way if we have Spectre mitigations enabled.
Improving the non-Spectre case is pretty straightforward: walk the dominator
tree and remember which values we've already branched on at this point, and
therefore we can simplify any further conditional branches on those same values
into direct jumps.
Improving the Spectre case requires something that is morally the same, but has
a few snags:
* We don't have actual `br_if`s to determine whether the bounds checking
condition succeeded or not. We need to instead reason about dominating
`select_spectre_guard; {load, store}` instruction pairs.
* We have to be SUPER careful about reasoning "through" `select_spectre_guard`s.
Our general rule is never to do that, since it could break the speculative
execution sandboxing that the instruction is designed for.
* Validate faulting addresses are valid to fault on
This commit adds a defense-in-depth measure to Wasmtime which is
intended to mitigate the impact of CVEs such as GHSA-ff4p-7xrq-q5r8.
Currently Wasmtime will catch `SIGSEGV` signals for WebAssembly code so
long as the instruction which faulted is an allow-listed instruction
(aka has a trap code listed for it). With the recent security issue,
however, the problem was that a wasm guest could exploit a compiler bug
to access memory outside of its sandbox. If the access was successful
there's no real way to detect that, but if the access was unsuccessful
then Wasmtime would happily swallow the `SIGSEGV` and report a nominal
trap. To embedders, this might look like nothing is going awry.
The new strategy implemented here in this commit is to attempt to be
more robust towards these sorts of failures. When a `SIGSEGV` is raised
the faulting pc is recorded but additionally the address of the
inaccessible location is also record. After the WebAssembly stack is
unwound and control returns to Wasmtime which has access to a `Store`
Wasmtime will now use this inaccessible faulting address to translate it
to a wasm address. This process should be guaranteed to succeed as
WebAssembly should only be able to access a well-defined region of
memory for all linear memories in a `Store`.
If no linear memory in a `Store` could contain the faulting address,
then Wasmtime now prints a scary message and aborts the process. The
purpose of this is to catch these sorts of bugs, make them very loud
errors, and hopefully mitigate impact. This would continue to not
mitigate the impact of a guest successfully loading data outside of its
sandbox, but if a guest was doing a sort of probing strategy trying to
find valid addresses then any invalid access would turn into a process
crash which would immediately be noticed by embedders.
While I was here I went ahead and additionally took a stab at #3120.
Traps due to `SIGSEGV` will now report the size of linear memory and the
address that was being accessed in addition to the bland "access out of
bounds" error. While this is still somewhat bland in the context of a
high level source language it's hopefully at least a little bit more
actionable for some. I'll note though that this isn't a guaranteed
contextual message since only the default configuration for Wasmtime
generates `SIGSEGV` on out-of-bounds memory accesses. Dynamically
bounds-checked configurations, for example, don't do this.
Testing-wise I unfortunately am not aware of a great way to test this.
The closet equivalent would be something like an `unsafe` method
`Config::allow_wasm_sandbox_escape`. In lieu of adding tests, though, I
can confirm that during development the crashing messages works just
fine as it took awhile on macOS to figure out where the faulting address
was recorded in the exception information which meant I had lots of
instances of recording an address of a trap not accessible from wasm.
* Fix tests
* Review comments
* Fix compile after refactor
* Fix compile on macOS
* Fix trap test for s390x
s390x rounds faulting addresses to 4k boundaries.
* x64: Take SIGFPE signals for divide traps
Prior to this commit Wasmtime would configure `avoid_div_traps=true`
unconditionally for Cranelift. This, for the division-based
instructions, would change emitted code to explicitly trap on trap
conditions instead of letting the `div` x86 instruction trap.
There's no specific reason for Wasmtime, however, to specifically avoid
traps in the `div` instruction. This means that the extra generated
branches on x86 aren't necessary since the `div` and `idiv` instructions
already trap for similar conditions as wasm requires.
This commit instead disables the `avoid_div_traps` setting for
Wasmtime's usage of Cranelift. Subsequently the codegen rules were
updated slightly:
* When `avoid_div_traps=true`, traps are no longer emitted for `div`
instructions.
* The `udiv`/`urem` instructions now list their trap as divide-by-zero
instead of integer overflow.
* The lowering for `sdiv` was updated to still explicitly check for zero
but the integer overflow case is deferred to the instruction itself.
* The lowering of `srem` no longer checks for zero and the listed trap
for the `div` instruction is a divide-by-zero.
This means that the codegen for `udiv` and `urem` no longer have any
branches. The codegen for `sdiv` removes one branch but keeps the
zero-check to differentiate the two kinds of traps. The codegen for
`srem` removes one branch but keeps the -1 check since the semantics of
`srem` mismatch with the semantics of `idiv` with a -1 divisor
(specifically for INT_MIN).
This is unlikely to have really all that much of a speedup but was
something I noticed during #6008 which seemed like it'd be good to clean
up. Plus Wasmtime's signal handling was already set up to catch
`SIGFPE`, it was just never firing.
* Remove the `avoid_div_traps` cranelift setting
With no known users currently removing this should be possible and helps
simplify the x64 backend.
* x64: GC more support for avoid_div_traps
Remove the `validate_sdiv_divisor*` pseudo-instructions and clean up
some of the ISLE rules now that `div` is allowed to itself trap
unconditionally.
* x64: Store div trap code in instruction itself
* Keep divisors in registers, not in memory
Don't accidentally fold multiple traps together
* Handle EXC_ARITHMETIC on macos
* Update emit tests
* Update winch and tests
Similar to the `--trap-unknown-imports` option, which defines unknown function
imports with functions that trap when called, this new
`--default-values-unknown-imports` option defines unknown function imports with
a function that returns the default values for the result types (either zero or
null depending on the value type).
This commit forces bounds checks to be used when pooling and running the
spec tests to ensure that they can be run at a reasonable degree of
parallelism. Otherwise currently the VM reservation required for the
multi-memory tests is so large that it fails to get reserved at runtime,
failing the test.
Closes#6003
* Update the spec test suite submodule
Delete the local copies of the relaxed-simd test suite as well as
they're now incorporated.
Closes#5914
* Remove page guards in QEMU emulation
Otherwise `(memory 0 0)` was being compiled as a static memory with huge
guards which we're trying to avoid in QEMU.
* Initial support for the Relaxed SIMD proposal
This commit adds initial scaffolding and support for the Relaxed SIMD
proposal for WebAssembly. Codegen support is supported on the x64 and
AArch64 backends on this time.
The purpose of this commit is to get all the boilerplate out of the way
in terms of plumbing through a new feature, adding tests, etc. The tests
are copied from the upstream repository at this time while the
WebAssembly/testsuite repository hasn't been updated.
A summary of changes made in this commit are:
* Lowerings for all relaxed simd opcodes have been added, currently all
exhibiting deterministic behavior. This means that few lowerings are
optimal on the x86 backend, but on the AArch64 backend, for example,
all lowerings should be optimal.
* Support is added to codegen to, eventually, conditionally generate
different code based on input codegen flags. This is intended to
enable codegen to more efficient instructions on x86 by default, for
example, while still allowing embedders to force
architecture-independent semantics and behavior. One good example of
this is the `f32x4.relaxed_fmadd` instruction which when deterministic
forces the `fma` instruction, but otherwise if the backend doesn't
have support for `fma` then intermediate operations are performed
instead.
* Lowerings of `iadd_pairwise` for `i16x8` and `i32x4` were added to the
x86 backend as they're now exercised by the deterministic lowerings of
relaxed simd instructions.
* Sample codegen tests for added for x86 and aarch64 for some relaxed
simd instructions.
* Wasmtime embedder support for the relaxed-simd proposal and forcing
determinism have been added to `Config` and the CLI.
* Support has been added to the `*.wast` runtime execution for the
`(either ...)` matcher used in the relaxed-simd proposal.
* Tests for relaxed-simd are run both with a default `Engine` as well as
a "force deterministic" `Engine` to test both configurations.
* All tests from the upstream repository were copied into Wasmtime.
These tests should be deleted when WebAssembly/testsuite is updated.
* x64: Add x86-specific lowerings for relaxed simd
This commit builds on the prior commit and adds an array of `x86_*`
instructions to Cranelift which have semantics that match their
corresponding x86 equivalents. Translation for relaxed simd is then
additionally updated to conditionally generate different CLIF for
relaxed simd instructions depending on whether the target is x86 or not.
This means that for AArch64 no changes are made but for x86 most relaxed
instructions now lower to some x86-equivalent with slightly different
semantics than the "deterministic" lowering.
* Add libcall support for fma to Wasmtime
This will be required to implement the `f32x4.relaxed_madd` instruction
(and others) when an x86 host doesn't specify the `has_fma` feature.
* Ignore relaxed-simd tests on s390x and riscv64
* Enable relaxed-simd tests on s390x
* Update cranelift/codegen/meta/src/shared/instructions.rs
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
* Add a FIXME from review
* Add notes about deterministic semantics
* Don't default `has_native_fma` to `true`
* Review comments and rebase fixes
---------
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
This notably updates `wasmparser` for updates to the relaxed-simd
proposal and an implementation of the function-references proposal.
Additionally there are some minor bug fixes being picked up for WIT and
the component model.
* wasi-threads: run test suite
This change enables the running of the wasi-threads [test suite]. It
relies on a Wasmtime CLI binary being available and runs all `*.wasm`
and `*.wat` files present in the test suite directory. The results of
each execution are compared against a JSON spec file with the same base
name as the WebAssembly module. The spec file defines the expected exit
code, e.g.
This commit does not yet build any `*.c` or `*.s` files from the test
suite. That could be done later, perhaps upstream; in the meantime, this
work is still valuable as it lays the foundation for running other WASI
tests from the in-progress [wasi-testsuite] which share the same JSON
spec infrastructure.
[test suite]: https://github.com/WebAssembly/wasi-threads/tree/main/test/testsuite
[wasi-testsuite]: https://github.com/WebAssembly/wasi-testsuite
* review: move testsuite to top-level tests
* fix: remove now-unnecessary wasi-threads test
* fix: update testsuite submodule name
* fix: ignore tests on Windows
prtest:full
* fix: `cfg_attr` syntax
prtest:full
* Change the name of wit-bindgen's host implementation traits.
Instead of naming the host implementation trait something like
`wasi_filesystem::WasiFilesystem`, name it `wasi_filesystem::Host`, and
avoid using the identifier `Host` in other places.
This fixes a collision when generating bindings for the current
wasi-clock API, which contains an interface `wall-clock` which contains
a type `wall-clock`, which created a naming collision on the name
`WallClock`.
* Update tests to use the new trait name.
* Fix one more.
* Add the new test interface to the simple-wasi world.
* Add a Result type alias
* Refer to the type in top-level docs
* Use this inside the documentation for the bindgen! macro
* Fix tests
* Address small PR feedback
* Simply re-export anyhow types
As @yamt points out [here], the `wait`/`notify` pairing used in this
manual WAT test was not effective. The `wait` always immediately
returned, meaning that the main thread essentially spins until a counter
is atomically incremented. This is fine for test correctness, but was
not the original intent, which was lost in a refactoring. This change
uses the `$i` local to keep track of the counter value we expect to see
for the `wait`, so that the `wait`/`notify` pair actually waits as
expected.
[here]: https://github.com/bytecodealliance/wasmtime/pull/5484#discussion_r1101200012
* x64: Add most remaining AVX lowerings
This commit goes through `inst.isle` and adds a corresponding AVX
lowering for most SSE lowerings. I opted to skip instructions where the
SSE lowering didn't read/modify a register, such as `roundps`. I think
that AVX will benefit these instructions when there's load-merging since
AVX doesn't require alignment, but I've deferred that work to a future
PR.
Otherwise though in this PR I think all (or almost all) of the 3-operand
forms of AVX instructions are supported with their SSE counterparts.
This should ideally improve codegen slightly by removing register
pressure and the need for `movdqa` between registers. I've attempted to
ensure that there's at least one codegen test for all the new instructions.
As a side note, the recent capstone integration into `precise-output`
tests helped me catch a number of encoding bugs much earlier than
otherwise, so I've found that incredibly useful in tests!
* Move `vpinsr*` instructions to their own variant
Use true `XmmMem` and `GprMem` types in the instruction as well to get
more type-level safety for what goes where.
* Remove `Inst::produces_const` accessor
Instead of conditionally defining regalloc and various other operations
instead add dedicated `MInst` variants for operations which are intended
to produce a constant to have more clear interactions with regalloc and
printing and such.
* Fix tests
* Register traps in `MachBuffer` for load-folding ops
This adds a missing `add_trap` to encoding of VEX instructions with
memory operands to ensure that if they cause a segfault that there's
appropriate metadata for Wasmtime to understand that the instruction
could in fact trap. This fixes a fuzz test case found locally where v8
trapped and Wasmtime didn't catch the signal and crashed the fuzzer.
This commit fixes a panic related to type imports where an import of a
type didn't correctly declare the new type index on the Wasmtime side of
things. Additionally this plumbs more support throughout Wasmtime to
support type imports, namely that they do not need to be supplied
through a `Linker`. This additionally implements a feature where empty
instances, even transitively, do not need to be supplied by a Wasmtime
embedder. This means that instances which only have types, for example,
do not need to be supplied into a `Linker` since no runtime information
for them is required anyway.
Closes#5775
* Update wasm-tools crates
Pulls in a new component binary format which should hopefully be the
last update for awhile.
* Update cargo vet configuration
* wasi-threads: fix import name
As @TerrorJack pointed out in #5484, that PR implements an older
name--`thread_spawn`. This change uses the now-official name from the
specification--`thread-spawn`.
* fix: update name in test
This commit includes a set of changes that add initial support for `wasi-threads` to Wasmtime:
* feat: remove mutability from the WasiCtx Table
This patch adds interior mutability to the WasiCtx Table and the Table elements.
Major pain points:
* `File` only needs `RwLock<cap_std::fs::File>` to implement
`File::set_fdflags()` on Windows, because of [1]
* Because `File` needs a `RwLock` and `RwLock*Guard` cannot
be hold across an `.await`, The `async` from
`async fn num_ready_bytes(&self)` had to be removed
* Because `File` needs a `RwLock` and `RwLock*Guard` cannot
be dereferenced in `pollable`, the signature of
`fn pollable(&self) -> Option<rustix::fd::BorrowedFd>`
changed to `fn pollable(&self) -> Option<Arc<dyn AsFd + '_>>`
[1] da238e324e/src/fs/fd_flags.rs (L210-L217)
* wasi-threads: add an initial implementation
This change is a first step toward implementing `wasi-threads` in
Wasmtime. We may find that it has some missing pieces, but the core
functionality is there: when `wasi::thread_spawn` is called by a running
WebAssembly module, a function named `wasi_thread_start` is found in the
module's exports and called in a new instance. The shared memory of the
original instance is reused in the new instance.
This new WASI proposal is in its early stages and details are still
being hashed out in the [spec] and [wasi-libc] repositories. Due to its
experimental state, the `wasi-threads` functionality is hidden behind
both a compile-time and runtime flag: one must build with `--features
wasi-threads` but also run the Wasmtime CLI with `--wasm-features
threads` and `--wasi-modules experimental-wasi-threads`. One can
experiment with `wasi-threads` by running:
```console
$ cargo run --features wasi-threads -- \
--wasm-features threads --wasi-modules experimental-wasi-threads \
<a threads-enabled module>
```
Threads-enabled Wasm modules are not yet easy to build. Hopefully this
is resolved soon, but in the meantime see the use of
`THREAD_MODEL=posix` in the [wasi-libc] repository for some clues on
what is necessary. Wiggle complicates things by requiring the Wasm
memory to be exported with a certain name and `wasi-threads` also
expects that memory to be imported; this build-time obstacle can be
overcome with the `--import-memory --export-memory` flags only available
in the latest Clang tree. Due to all of this, the included tests are
written directly in WAT--run these with:
```console
$ cargo test --features wasi-threads -p wasmtime-cli -- cli_tests
```
[spec]: https://github.com/WebAssembly/wasi-threads
[wasi-libc]: https://github.com/WebAssembly/wasi-libc
This change does not protect the WASI implementations themselves from
concurrent access. This is already complete in previous commits or left
for future commits in certain cases (e.g., wasi-nn).
* wasi-threads: factor out process exit logic
As is being discussed [elsewhere], either calling `proc_exit` or
trapping in any thread should halt execution of all threads. The
Wasmtime CLI already has logic for adapting a WebAssembly error code to
a code expected in each OS. This change factors out this logic to a new
function, `maybe_exit_on_error`, for use within the `wasi-threads`
implementation.
This will work reasonably well for CLI users of Wasmtime +
`wasi-threads`, but embedders will want something better in the future:
when a `wasi-threads` threads fails, they may not want their application
to exit. Handling this is tricky, because it will require cancelling the
threads spawned by the `wasi-threads` implementation, something that is
not trivial to do in Rust. With this change, we defer that work until
later in order to provide a working implementation of `wasi-threads` for
experimentation.
[elsewhere]: https://github.com/WebAssembly/wasi-threads/pull/17
* review: work around `fd_fdstat_set_flags`
In order to make progress with wasi-threads, this change temporarily
works around limitations induced by `wasi-common`'s
`fd_fdstat_set_flags` to allow `&mut self` use in the implementation.
Eventual resolution is tracked in
https://github.com/bytecodealliance/wasmtime/issues/5643. This change
makes several related helper functions (e.g., `set_fdflags`) take `&mut
self` as well.
* test: use `wait`/`notify` to improve `threads.wat` test
Previously, the test simply executed in a loop for some hardcoded number
of iterations. This changes uses `wait` and `notify` and atomic
operations to keep track of when the spawned threads are done and join
on the main thread appropriately.
* various fixes and tweaks due to the PR review
---------
Signed-off-by: Harald Hoyer <harald@profian.com>
Co-authored-by: Harald Hoyer <harald@profian.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
* Prefix component-bindgen-generated-functions with `call_`
This fixes clashes between Rust-native methods and the methods
themselves. For example right now `new` is a Rust-generated function for
constructing the wrapper but this can conflict with a world-exported
function called `new`.
Closes#5585
* Fix types being both shared and owned
This refactors some inherited cruft from the original `wit-bindgen`
repository to be more Wasmtime-specific and fixes a codegen case where
a type was used in both a shared and an owned context.
Closes#5688
* Remove the need to have a `Store` for an `InstancePre`
This commit relaxes a requirement of the `InstancePre` API, notably its
construction via `Linker::instantiate_pre`. Previously this function
required a `Store<T>` to be present to be able to perform type-checking
on the contents of the linker, and now this requirement has been
removed.
Items stored within a linker are either a `HostFunc`, which has type
information inside of it, or an `Extern`, which doesn't have type
information inside of it. Due to the usage of `Extern` this is why a
`Store` was required during the `InstancePre` construction process, it's
used to extract the type of an `Extern`. This commit implements a
solution where the type information of an `Extern` is stored alongside
the `Extern` itself, meaning that the `InstancePre` construction process
no longer requires a `Store<T>`.
One caveat of this implementation is that some items, such as tables and
memories, technically have a "dynamic type" where during type checking
their current size is consulted to match against the minimum size
required of an import. This no longer works when using
`Linker::instantiate_pre` as the current size used is the one when it
was inserted into the linker rather than the one available at
instantiation time. It's hoped, however, that this is a relatively
esoteric use case that doesn't impact many real-world users.
Additionally note that this is an API-breaking change. Not only is the
`Store` argument removed from `Linker::instantiate_pre`, but some other
methods such as `Linker::define` grew a `Store` argument as the type
needs to be extracted when an item is inserted into a linker.
Closes#5675
* Fix the C API
* Fix benchmark compilation
* Add C API docs
* Update crates/wasmtime/src/linker.rs
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
---------
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
This commit removes the pooling of `Instance` allocations from the
pooling instance allocator. This means that the allocation of `Instance`
(and `VMContext`) memory, now always happens through the system `malloc`
and `free` instead of optionally being part of the pooling instance
allocator. Along the way this refactors the `InstanceAllocator` trait so
the pooling and on-demand allocators can share more structure with this
new property of the implementation.
The main rationale for this commit is to reduce the RSS of long-lived
programs which allocate instances with the pooling instance allocator
and aren't using the "next available" allocation strategy. In this
situation the memory for an instance is never decommitted until the end
of the program, meaning that eventually all instance slots will become
occupied and resident. This has the effect of Wasmtime slowly eating
more and more memory over time as each slot gets an instance allocated.
By switching to the system allocator this should reduce the current RSS
workload from O(used slots) to O(active slots), which is more in line
with expectations.
* Fix libcall relocations for precompiled modules
This commit fixes some asserts and support for relocation libcalls in
precompiled modules loaded from disk. In doing so this reworks how mmaps
are managed for files from disk. All non-file-backed `Mmap` entries are
read/write but file-backed versions were readonly. This commit changes
this such that all `Mmap` objects, even if they're file-backed, start as
read/write. The file-based versions all use copy-on-write to preserve
the private-ness of the mapping.
This is not functionally intended to change anything. Instead this
should have some more memory writable after a module is loaded but the
text section, for example, is still left as read/execute when loading is
finished. Additionally this makes modules compiled in memory more
consistent with modules loaded from disk.
* Update a comment
* Force images to become readonly during publish
This marks compiled images as entirely readonly during the
`CodeMemory::publish` step which happens just before the text section
becomes executable. This ensures that all images, no matter where they
come from, are guaranteed frozen before they start executing.
This commit fixes more cases from #5565 where `export` items introducing
indices wasn't handled by accident. Additionally this fixes support for
aliasing types from instances which largely wasn't working before. Most
of the fixes here are about correctly maintaining Wasmtime's view of the
type index spaces.
* Update WIT tooling used by Wasmtime
This commit updates the WIT tooling, namely the wasm-tools family of
crates, with recent updates. Notably:
* bytecodealliance/wasm-tools#867
* bytecodealliance/wasm-tools#871
This updates index spaces in components and additionally bumps the
minimum required version of the component binary format to be consumed
by Wasmtime (because of the index space changes). Additionally WIT
tooling now fully supports `use`.
Note that WIT tooling doesn't, at this time, fully support packages and
depending on remotely defined WIT packages. Currently WIT still needs to
be vendored in the project. It's hoped that future work with `cargo
component` and possible integration here could make the story about
depending on remotely-defined WIT more ergonomic and streamlined.
* Fix `bindgen!` codegen tests
* Add a test for `use` paths an implement support
* Update to crates.io versions of wasm-tools
* Uncomment codegen tests
This commit fixes an issue where when backtraces were disabled but a
host function returned an error it would trigger a debug assertion
within Wasmtime. The fix here is to update the condition of the debug
assertion and add a test doing this behavior to ensure it works in the
future.
I've also further taken the liberty in this commit to remove the
deprecation notice for `Config::wasm_backtrace`. We don't really have a
strong reason for removing this functionality at this time and users
have multiple times now reported issues with performance that seem
worthwhile to keep the option. The latest issue, #5577, has a use case
where it appears the quadratic behavior is back in a way that Wasmtime
won't be able to detect. Namely with lots of wasm interleaved with host
on the stack if the original error isn't threaded through the entire
time then each host error will trigger a new backtrace since it doesn't
see a prior backtrace in the error being returned.
While this could otherwise be fixed with only capturing one contiguous
backtrace perhaps this seems reasonable enough to leave the
`wasm_backtrace` config option for now.
Closes#5577
The definitions of `wasmtime::component::Val::Float{32,64}` mirrored
`wasmtime::Val::F{32,64}` by using integers as their wrapped types,
storing the bit representation of their floating point values.
This was necessary for the core Wasm `f32`/`f64` types because Rust
floats don't have guaranteed NaN bit representations.
The component model `float32`/`float64` types require NaN
canonicalization, so we can use normal Rust `f{32,64}` instead.
Closes#5480
This adds a new error type `UnknownImportError` which will be returned
(wrapped in an `anyhow::Error`) by `Linker::instantiate{,_async,_pre}`
if a module has an unresolvable import.
This error type is also used by `Linker::define_unknown_imports_as_traps`;
any resulting traps will also downcast to `UnknownImportError`.
Closes#5416
* Account for fuel before unconditionally trapping Wasm accesses
Fixes#5445
* Add a test for fuel accounting and unconditionally trapping memory accesses
* wip
* start trying to write a runtime test
* cut out all the more complex test cases until i get this one working
* add macro parsing for the trappable error type config
* runtime result tests works for an empty and a string error type
* debugging: macro is broken because interfaces dont have names???
* thats how you name interfaces
* record error and variant error work
* show a concrete trap type, remove debug
* delete clap annotations from wit-bindgen crate
these are not used - clap isnt even an optional dep here - but were a holdover from the old home
* Import Wasmtime support from the `wit-bindgen` repo
This commit imports the `wit-bindgen-gen-host-wasmtime-rust` crate from
the `wit-bindgen` repository into the upstream Wasmtime repository. I've
chosen to not import the full history here since the crate is relatively
small and doesn't have a ton of complexity. While the history of the
crate is quite long the current iteration of the crate's history is
relatively short so there's not a ton of import there anyway. The
thinking is that this can now continue to evolve in-tree.
* Refactor `wasmtime-component-macro` a bit
Make room for a `wit_bindgen` macro to slot in.
* Add initial support for a `bindgen` macro
* Add tests for `wasmtime::component::bindgen!`
* Improve error forgetting `async` feature
* Add end-to-end tests for bindgen
* Add an audit of `unicase`
* Add a license to the test-helpers crate
* Add vet entry for `pulldown-cmark`
* Update publish script with new crate
* Try to fix publish script
* Update audits
* Update lock file
* Simplify the `ModuleRuntimeInfo` trait slightly
Fold two functions into one as they're only called from one location
anyway.
* Remove ModuleRuntimeInfo::signature
This is redundant as the array mapping is already stored within the
`VMContext` so that can be consulted rather than having a separate trait
function for it. This required altering the `Global` creation slightly
to work correctly in this situation.
* Remove a now-dead constant
* Shared `VMOffsets` across instances
This commit removes the computation of `VMOffsets` to being per-module
instead of per-instance. The `VMOffsets` structure is also quite large
so this shaves off 112 bytes per instance which isn't a huge impact but
should help lower the cost of instantiating small modules.
* Remove `InstanceAllocator::adjust_tunables`
This is no longer needed or necessary with the pooling allocator.
* Fix compile warning
* Fix a vtune warning
* Fix pooling tests
* Fix another test warning
* Add a `WasmBacktrace::new()` constructor
This commit adds a method of manually capturing a backtrace of
WebAssembly frames within a `Store`. The new constructor can be called
with any `AsContext` values, primarily `&Store` and `&Caller`, during
host functions to inspect the calling state.
For now this does not respect the `Config::wasm_backtrace` option and
instead unconditionally captures the backtrace. It's hoped that this can
continue to adapt to needs of embedders by making it more configurable
int he future if necessary.
Closes#5339
* Split `new` into `capture` and `force_capture`
* Remove some custom error types in Wasmtime
These types are mostly cumbersome to work with nowadays that `anyhow` is
used everywhere else. This commit removes `InstantiationError` and
`SetupError` in favor of using `anyhow::Error` throughout. This can
eventually culminate in creation of specific errors for embedders to
downcast to but for now this should be general enough.
* Fix Windows build
* Treat `-` as an alias to `/dev/stdin`
This applies to unix targets only,
as Windows does not have an appropriate alternative.
* Add tests for piped modules from stdin
This applies to unix targets only,
as Windows does not have an appropriate alternative.
* Move precompiled module detection into wasmtime
Previously, wasmtime-cli checked the module to be loaded is
precompiled or not, by pre-opening the given file path to
check if the "\x7FELF" header exists.
This commit moves this branch into the `Module::from_trusted_file`,
which is only invoked with `--allow-precompiled` flag on CLI.
The initial motivation of the commit is, feeding a module to wasmtime
from piped inputs, is blocked by the pre-opening of the module.
The `Module::from_trusted_file`, assumes the --allow-precompiled flag
so there is no piped inputs, happily mmap-ing the module to test
if the header exists.
If --allow-precompiled is not supplied, the existing `Module::from_file`
will be used, without the additional header check as the precompiled
modules are intentionally not allowed on piped inputs for security measures.
One caveat of this approach is that the user may be confused if
he or she tries to execute a precompiled module without
--allow-precompiled, as wasmtime shows an 'input bytes aren't valid
utf-8' error, not directly getting what's going wrong.
So this commit includes a hack-ish workaround for this.
Thanks to @jameysharp for suggesting this idea with a detailed guidance.
* Turn off probestack by default in Cranelift
The probestack feature is not implemented for the aarch64 and s390x
backends and currently the on-by-default status requires the aarch64 and
s390x implementations to be a stub. Turning off probestack by default
allows the s390x and aarch64 backends to panic with an error message to
avoid providing a false sense of security. When the probestack option is
implemented for all backends, however, it may be reasonable to
re-enable.
* aarch64: Improve codegen for AMode fallback
Currently the final fallback for finalizing an `AMode` will generate
both a constant-loading instruction as well as an `add` instruction to
the base register into the same temporary. This commit improves the
codegen by removing the `add` instruction and folding the final add into
the finalized `AMode`. This changes the `extendop` used but both
registers are 64-bit so shouldn't be affected by the extending
operation.
* aarch64: Implement inline stack probes
This commit implements inline stack probes for the aarch64 backend in
Cranelift. The support here is modeled after the x64 support where
unrolled probes are used up to a particular threshold after which a loop
is generated. The instructions here are similar in spirit to x64 except
that unlike x64 the stack pointer isn't modified during the unrolled
loop to avoid needing to re-adjust it back up at the end of the loop.
* Enable inline probestack for AArch64 and Riscv64
This commit enables inline probestacks for the AArch64 and Riscv64
architectures in the same manner that x86_64 has it enabled now. Some
more testing was additionally added since on Unix platforms we should be
guaranteed that Rust's stack overflow message is now printed too.
* Enable probestack for aarch64 in cranelift-fuzzgen
* Address review comments
* Remove implicit stack overflow traps from x64 backend
This commit removes implicit `StackOverflow` traps inserted by the x64
backend for stack-based operations. This was historically required when
stack overflow was detected with page faults but Wasmtime no longer
requires that since it's not suitable for wasm modules which call host
functions. Additionally no other backend implements this form of
implicit trap-code additions so this is intended to synchronize the
behavior of all the backends.
This fixes a test added prior for aarch64 to properly abort the process
instead of accidentally being caught by Wasmtime.
* Fix a style issue
* wasmtime: enable stack probing for x86_64 targets.
This commit unconditionally enables stack probing for x86_64 targets.
On Windows, stack probing is always required because of the way Windows commits
stack pages (via guard page access).
Fixes#5340.
* Remove SIMD types from test case.
This commit refactors the internals of `wasmtime_runtime::SharedMemory`
a bit to expose the necessary functions to invoke from the
`wasmtime::SharedMemory` layer. Notably some items are moved out of the
`RwLock` from prior, such as the type and the `VMMemoryDefinition`.
Additionally the organization around the `atomic_*` methods has been
redone to ensure that the `wasmtime`-layer abstraction has a single
method to call into which everything else uses as well.
* feat: implement memory.atomic.notify,wait32,wait64
Added the parking_spot crate, which provides the needed registry for the
operations.
Signed-off-by: Harald Hoyer <harald@profian.com>
* fix: change trap message for HeapMisaligned
The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add test for atomic wait on non-shared memory
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests/spec_testsuite/proposals/threads
without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add atomics_notify.wast
checking that notify with 0 waiters returns 0 on shared and non-shared
memory.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests for atomic wait on shared memory
- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
* Remove explicit `S` type parameters
This commit removes the explicit `S` type parameter on `Func::typed` and
`Instance::get_typed_func`. Historical versions of Rust required that
this be a type parameter but recent rustcs support a mixture of explicit
type parameters and `impl Trait`. This removes, at callsites, a
superfluous `, _` argument which otherwise never needs specification.
* Fix mdbook examples