This makes the value of `state.reachable()` inaccurate when observing at
the tail of functions (in the post-function hook) after an ordinary
return instruction.
In some cases, it is useful to do some work at entry to or exit from a
Cranelift function translated from WebAssembly. This PR adds two
optional methods to the `FuncEnvironment` trait to do just this,
analogous to the pre/post-hooks on operators that already exist.
This PR also includes a drive-by compilation fix due to the latest
nightly wherein `.is_empty()` on a `Range` ambiguously refers to either
the `Range` impl or the `ExactSizeIterator` impl and can't resolve.
* Enhance wiggle to generate its UserErrorConverstion trait with a function that returns
a Result<abi_err, String>. This enhancement allows hostcall implementations using wiggle
to return an actionable error to the instance (the abi_err) or to terminate the instance
using the String as fatal error information.
* Enhance wiggle to generate its UserErrorConverstion trait with a function that returns
a Result<abi_err, String>. This enhancement allows hostcall implementations using wiggle
to return an actionable error to the instance (the abi_err) or to terminate the instance
using the String as fatal error information.
* Enhance the wiggle/wasmtime integration to leverage new work in ab7e9c6. Hostcall
implementations generated by wiggle now return an Result<abi_error, Trap>. As a
result, hostcalls experiencing fatal errors may trap, thereby terminating the
wasmtime instance. This enhancement has been performed for both wasi snapshot1
and wasi snapshot0.
* Update wasi-nn crate to reflect enhancement in issue #2418.
* Update wiggle test-helpers for wiggle enhancement made in issue #2418.
* Address PR feedback; omit verbose return statement.
* Address PR feedback; manually format within a proc macro.
* Address PR feedback; manually format proc macro.
* Restore return statements to wasi.rs.
* Restore return statements in funcs.rs.
* Address PR feedback; omit TODO and fix formatting.
* Ok-wrap error type in assert statement.
With the module linking proposal the field name on imports is now
optional, and only the module is required to be specified. This commit
propagates this API change to the boundary of wasmtime's API, ensuring
consumers are aware of what's optional with module linking and what
isn't. Note that it's expected that all existing users will either
update accordingly or unwrap the result since module linking is
presumably disabled.
AFAIK this isn't really necessary nowadays given the prevalence of
rustfmt, and for whatever reason the Rust plugin for vim uses this file
in lieu of all other options, meaning it doesn't pass `--edition 2018`
by default which has been causing issues as I've been working on `async`
stuff. In any case I don't think we need the file regardless, so this
commit deletes it.
This end result was previously enacted by carrying a `SourceLoc` on
every load/store, which was somewhat cumbersome, and only indirectly
encoded metadata about a memory reference (can it trap) by its presence
or absence. We have a type for this -- `MemFlags` -- that tells us
everything we might want to know about a load or store, and we should
plumb it through to code emission instead.
This PR attaches a `MemFlags` to an `Amode` on x64, and puts it on load
and store `Inst` variants on aarch64. These two choices seem to factor
things out in the nicest way: there are relatively few load/store insts
on aarch64 but many addressing modes, while the opposite is true on x64.
This PR makes use of the support in #2366 for sinking effectful
instructions and merging them with consumers. In particular, on x86, we
want to make use of the ability of many instructions to load one operand
directly from memory. That is, instead of this:
```
movq 0(%rdi), %rax
addq %rax, %rbx
```
we want to generate this:
```
addq 0(%rdi), %rax
```
As described in more detail in #2366, sinking and merging the load is
only possible under certain conditions. In particular, we need to ensure
that the use is the *only* use (otherwise the load happens more than
once), and we need to ensure that it does not move across other
effectful ops (see #2366 for how we ensure this).
This change is actually fairly simple, given that all the framework is
in place: we simply pattern-match a load on one operand of an ALU
instruction that takes an RMI (reg, mem, or immediate) operand, and
generate the mem form when we match.
Also makes a drive-by improvement in the x64 backend to use
statically-monomorphized `LowerCtx` types rather than a `&mut dyn
LowerCtx`.
On `bz2.wasm`, this results in ~1% instruction-count reduction. More is
likely possible by following up with other instructions that can merge
memory loads as well.
This was added as an incremental step to improve AArch64 code quality in
PR #2278. At the time, we did not have a way to pattern-match the load +
splat opcode sequence that the relevant Wasm opcodes lowered to.
However, now with PR #2366, we can merge effectful instructions such as
loads into other ops, and so we can do this pattern matching directly.
The pattern-matching update will come in a subsequent commit.
This PR updates the "coloring" scheme that accounts for side-effects in
the MachInst lowering logic. As a result, the new backends will now be
able to merge effectful operations (such as memory loads) *into* other
operations; previously, only the other way (pure ops merged into
effectful ops) was possible. This will allow, for example, a load+ALU-op
combination, as is common on x86. It should even allow a load + ALU-op +
store sequence to merge into one lowered instruction.
The scheme arose from many fruitful discussions with @julian-seward1
(thanks!); significant credit is due to him for the insights here.
The first insight is that given the right basic conditions, i.e. that
the root instruction is the only use of an effectful instruction's
result, all we need is that the "color" of the effectful instruction is
*one less* than the color of the current instruction. It's easier to
think about colors on the program points between instructions: if the
color coming *out* of the first (effectful def) instruction and *in* to
the second (effectful or effect-free use) instruction are the same, then
they can merge. Basically the color denotes a version of global state;
if the same, then no other effectful ops happened in the meantime.
The second insight is that we can keep state as we scan, tracking the
"current color", and *update* this when we sink (merge) an op. Hence
when we sink a load into another op, we effectively *re-color* every
instruction it moved over; this may allow further sinks.
Consider the example (and assume that we consider loads effectful in
order to conservatively ensure a strong memory model; otherwise, replace
with other effectful value-producing insts):
```
v0 = load x
v1 = load y
v2 = add v0, 1
v3 = add v1, 1
```
Scanning from bottom to top, we first see the add producing `v3` and we
can sink the load producing `v1` into it, producing a load + ALU-op
machine instruction. This is legal because `v1` moves over only `v2`,
which is a pure instruction. Consider, though, `v2`: under a simple
scheme that has no other context, `v0` could not sink to `v2` because it
would move over `v1`, another load. But because we already sunk `v1`
down to `v3`, we are free to sink `v0` to `v2`; the update of the
"current color" during the scan allows this.
This PR also cleans up the `LowerCtx` interface a bit at the same time:
whereas previously it always gave some subset of (constant, mergeable
inst, register) directly from `LowerCtx::get_input()`, it now returns
zero or more of (constant, mergable inst) from
`LowerCtx::maybe_get_input_as_source_or_const()`, and returns the
register only from `LowerCtx::put_input_in_reg()`. This removes the need
to explicitly denote uses of the register, so it's a little safer.
Note that this PR does not actually make use of the new ability to merge
loads into other ops; that will come in future PRs, especially to
optimize the `x64` backend by using direct-memory operands.
If a host-defined `Func::new` closure returns values from the wrong
store, this currently trips a debug assertion and causes other issues
elsewhere in release mode. This commit adds the same dynamic checks
found in `Func::wrap` in the `Func::new` case today.
This fixes an issue where if a store-incompatible value is returned from
a host-defined function then that value is leaked. Practically this
means that it's possible to accidentally leak `Func` values, but a
simple insertion of a `drop` does the trick!
* Add an initial wasi-nn implementation for Wasmtime
This change adds a crate, `wasmtime-wasi-nn`, that uses `wiggle` to expose the current state of the wasi-nn API and `openvino` to implement the exposed functions. It includes an end-to-end test demonstrating how to do classification using wasi-nn:
- `crates/wasi-nn/tests/classification-example` contains Rust code that is compiled to the `wasm32-wasi` target and run with a Wasmtime embedding that exposes the wasi-nn calls
- the example uses Rust bindings for wasi-nn contained in `crates/wasi-nn/tests/wasi-nn-rust-bindings`; this crate contains code generated by `witx-bindgen` and eventually should be its own standalone crate
* Test wasi-nn as a CI step
This change adds:
- a GitHub action for installing OpenVINO
- a script, `ci/run-wasi-nn-example.sh`, to run the classification example