Peepmatic was an early attempt at a DSL for peephole optimizations, with the
idea that maybe sometime in the future we could user it for instruction
selection as well. It didn't really pan out, however:
* Peepmatic wasn't quite flexible enough, and adding new operators or snippets
of code implemented externally in Rust was a bit of a pain.
* The performance was never competitive with the hand-written peephole
optimizers. It was *very* size efficient, but that came at the cost of
run-time efficiency. Everything was table-based and interpreted, rather than
generating any Rust code.
Ultimately, because of these reasons, we never turned Peepmatic on by default.
These days, we just landed the ISLE domain-specific language, and it is better
suited than Peepmatic for all the things that Peepmatic was originally designed
to do. It is more flexible and easy to integrate with external Rust code. It is
has better time efficiency, meeting or even beating hand-written code. I think a
small part of the reason why ISLE excels in these things is because its design
was informed by Peepmatic's failures. I still plan on continuing Peepmatic's
mission to make Cranelift's peephole optimizer passes generated from DSL rewrite
rules, but using ISLE instead of Peepmatic.
Thank you Peepmatic, rest in peace!
Currently, the `build.rs` script that generates Rust source from the
ISLE DSL will only do this generation if the `rebuild-isle` Cargo
feature is specified. By default, it is not. This is based on the
principle that we (the build script) do not modify the source tree as
managed by git; git-managed files are strictly a human-managed and
human-edited resource. By adding the opt-in Cargo feature, a developer
is requesting the build script to perform an explicit action. (In my
understanding at least, this principle comes from the general philosophy
of hermetic builds: the output should be a pure function of the input,
and part of this is that the input is read-only. If we modify the source
tree, then all bets are off.)
Unfortunately, requiring the opt-in feature also creates a footgun that
is easy to hit: if a developer modifies the ISLE DSL source, but forgets
to specify the Cargo feature, then the compiler will silently be built
successfully with stale source, and will silently exclude any changes
that were made.
The generated source is checked into git for a good reason: we want DSL
compiler to not affect build times for the overwhelmingly common case
that Cranelift is used as a dependency but the backends are not being
actively developed. (This overhead comes mainly from building `islec`
itself.)
So, what to do? This PR implements a middle ground first described in
[this conversation](https://github.com/bytecodealliance/wasmtime/pull/3506#discussion_r743113351), in which we:
- Generate a hash (SHA-512) of the ISLE DSL source and produce a
"manifest" of ISLE inputs alongside the generated source; and
- Always read the ISLE DSL source, and see if the manifest is still
valid, on builds that do not have the opt-in "rebuild" feature.
This allows us to know whether the ISLE compiler output would have been
the same (modulo changes to the DSL compiler itself, which are
out-of-scope here), without actually building the ISLE compiler and
running it.
If the compiler-backend developer modifies an ISLE source file and then
tries to build `cranelift-codegen` without adding the `rebuild-isle`
Cargo feature, they get the following output:
```text
Error: the ISLE source files that resulted in the generated Rust source
* src/isa/x64/lower/isle/generated_code.rs
have changed but the generated source was not rebuilt! These ISLE source
files are:
* src/clif.isle
* src/prelude.isle
* src/isa/x64/inst.isle
* src/isa/x64/lower.isle
Please add `--features rebuild-isle` to your `cargo build` command
if you wish to rebuild the generated source, then include these changes
in any git commits you make that include the changes to the ISLE.
For example:
$ cargo build -p cranelift-codegen --features rebuild-isle
(This build script cannot do this for you by default because we cannot
modify checked-into-git source without your explicit opt-in.)
```
which will tell them exactly what they need to do to fix the problem!
Note that I am leaving the "Rebuild ISLE" CI job alone for now, because
otherwise, we are trusting whomever submits a PR to generate the correct
generated source. In other words, the manifest is a communication from
the checked-in tree to the developer, but we still need to verify that
the checked-in generated Rust source and the manifest are correct with
respect to the checked-in ISLE source.
This pulls in a fix for Android, where Android's seccomp policy on older
versions is to make `openat2` irrecoverably crash the process, so we have
to do a version check up front rather than relying on `ENOSYS` to
determine if `openat2` is supported.
And it pulls in the fix for the link errors when multiple versions of
rsix/rustix are linked in.
And it has updates for two crate renamings: rsix has been renamed to
rustix, and unsafe-io has been renamed to io-extras.
This commit updates the crate name from `rusty_v8` to `v8` as well since
the upstream bindings have sinced moved. I originally wanted to do this
to see if a fix for one of our fuzz bugs was pulled in but I don't think
the fix has been pulled in yet. Despite that it seems reasonable to go
ahead and update.
* Adjust dependency directives between crates
This commit is a preparation for the release process for Wasmtime. The
specific changes here are to delineate which crates are "public", and
all version requirements on non-public crates will now be done with
`=A.B.C` version requirements instead of today's `A.B.C` version
requirements.
The purpose for doing this is to assist with patch releases that might
happen in the future. Patch releases of wasmtime are already required to
not break the APIs of "public" crates, but no such guarantee is given
about "internal" crates. This means that a patch release runs the risk,
for example, of breaking an internal API. In doing so though we would
also need to release a new major version of the internal crate, but we
wouldn't have a great hole in the number scheme of major versions to do
so. By using `=A.B.C` requirements for internal crates it means we can
safely ignore strict semver-compatibility between releases of internal
crates for patch releases, since the only consumers of the crate will be
the corresponding patch release of the `wasmtime` crate itself (or other
public crates).
The `publish.rs` script has been updated with a check to verify that
dependencies on internal crates are all specified with an `=`
dependency, and dependnecies on all public crates are without a `=`
dependency. This will hopefully make it so we don't have to worry about
what to use where, we just let CI tell us what to do. Using this
modification all version dependency declarations have been updated.
Note that some crates were adjusted to simply remove their `version`
requirement in cases such as the crate wasn't published anyway (`publish
= false` was specified) or it's in the `dev-dependencies` section which
doesn't need version specifiers for path dependencies.
* Switch to normal sever deps for cranelift dependencies
These crates will now all be considered "public" where in patch releases
they will be guaranteed to not have breaking changes.
It appears that some allocation heuristics have changed slightly since
0.0.31, so some of the golden-output filetests are updated as well.
Ideally we would rely more on runtests rather than golden-compilation
tests; but for now this is sufficient. (I'm not sure exactly what in
regalloc.rs changed to alter these heuristics; it's actually been almost
a year since the 0.0.31 release with several refactorings and tweaks
merged since then.)
Fixes#3441.
* Update the spec reference testsuite submodule
This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.
* Fix now-missing directories in build script
On the build side, this commit introduces two things:
1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.
2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.
Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.
Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.
In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:
dst = src1 op src2
Rather than only the typical x86-64 2-operand form:
dst = dst op src
This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.
("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)
There are two motivations for this change:
1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
lowering to translate a CLIF expression that evaluates to some value into a
`MachInst` expression that evaluates to the same value. We want both the
lowering itself and the resulting `MachInst` to be pure and referentially
transparent. This is both a nice paradigm for compiler writers that are
authoring and maintaining lowering rules and is a prerequisite to any sort of
formal verification of our lowering rules in the future.
2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
be in SSA form.
* Add some debug logging for timing in module compiles
This is sometimes helpful when debugging slow compiles from fuzz bugs or
similar.
* Fix total duration calculation to not double-count
Revert the part of 47490b4383 which
changed cranelift-native to use rsix. It's just one call, and this lets
Cranelift users that don't otherwise depend on rsix to avoid it.
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.
A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.
[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
* Use rsix to make system calls in Wasmtime.
`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:
- It eliminates some `unsafe` blocks in Wasmtime's code. There's
still an `unsafe` block in the library, but this way, the `unsafe`
is factored out and clearly scoped.
- And, it makes error handling more consistent, factoring out code for
checking return values and `io::Error::last_os_error()`, and code that
does `errno::set_errno(0)`.
This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
This commit improves the runtime support for wasm-to-host invocations
for functions created with `Func::new` or `wasmtime_func_new` in the C
API. Previously a `Vec` (sometimes a `SmallVec`) would be dynamically
allocated on each host call to store the arguments that are coming from
wasm and going to the host. In the case of the `wasmtime` crate we need
to decode the `u128`-stored values, and in the case of the C API we need
to decode the `Val` into the C API's `wasmtime_val_t`.
The technique used in this commit is to store a singular `Vec<T>` inside
the "store", be it the literal `Store<T>` or within the `T` in the case
of the C API, which can be reused across wasm->host calls. This means
that we're unlikely to actually perform dynamic memory allocation and
instead we should hit a faster path where the `Vec` always has enough
capacity.
Note that this is just a mild improvement for `Func::new`-based
functions. It's still the case that `Func::wrap` is much faster, but
unfortunately the C API doesn't have access to `Func::wrap`, so the main
motivation here is accelerating the C API.
- Fixes for compiling on OpenBSD
- io-lifetimes 0.3.0 has an option (io_lifetimes_use_std, which is off
by default) for testing the `io_safety` feature in Rust nightly.
* Add differential fuzzing against V8
This commit adds a differential fuzzing target to Wasmtime along the
lines of the wasmi and spec interpreters we already have, but with V8
instead. The intention here is that wasmi is unlikely to receive updates
over time (e.g. for SIMD), and the spec interpreter is not suitable for
fuzzing against in general due to its performance characteristics. The
hope is that V8 is indeed appropriate to fuzz against because it's
naturally receiving updates and it also is expected to have good
performance.
Here the `rusty_v8` crate is used which provides bindings to V8 as well
as precompiled binaries by default. This matches exactly the use case we
need and at least for now I think the `rusty_v8` crate will be
maintained by the Deno folks as they continue to develop it. If it
becomes an issue though maintaining we can evaluate other options to
have differential fuzzing against.
For now this commit enables the SIMD and bulk-memory feature of
fuzz-target-generation which should enable them to get
differentially-fuzzed with V8 in addition to the compilation fuzzing
we're already getting.
* Use weak linkage for GDB jit helpers
This should help us deduplicate our symbol with other JIT runtimes, if
any. For now this leans on some C helpers to define the weak linkage
since Rust doesn't support that on stable yet.
* Don't use rusty_v8 on MinGW
They don't have precompiled libraries there.
* Fix msvc build
* Comment about execution
Similar functionality to `scroll` is provided with the `object` crate
and doesn't have a `*_derive` crate to go with it. This commit updates
the jitdump linux support to use `object` instead of `scroll` to achieve
the needs of writing structs-as-bytes onto disk.
* Use an mmap-friendly serialization format
This commit reimplements the main serialization format for Wasmtime's
precompiled artifacts. Previously they were generally a binary blob of
`bincode`-encoded metadata prefixed with some versioning information.
The downside of this format, though, is that loading a precompiled
artifact required pushing all information through `bincode`. This is
inefficient when some data, such as trap/address tables, are rarely
accessed.
The new format added in this commit is one which is designed to be
`mmap`-friendly. This means that the relevant parts of the precompiled
artifact are already page-aligned for updating permissions of pieces
here and there. Additionally the artifact is optimized so that if data
is rarely read then we can delay reading it until necessary.
The new artifact format for serialized modules is an ELF file. This is
not a public API guarantee, so it cannot be relied upon. In the meantime
though this is quite useful for exploring precompiled modules with
standard tooling like `objdump`. The ELF file is already constructed as
part of module compilation, and this is the main contents of the
serialized artifact.
THere is some extra information, though, not encoded in each module's
individual ELF file such as type information. This information continues
to be `bincode`-encoded, but it's intended to be much smaller and much
faster to deserialize. This extra information is appended to the end of
the ELF file. This means that the original ELF file is still a valid ELF
file, we just get to have extra bits at the end. More information on the
new format can be found in the module docs of the serialization module
of Wasmtime.
Another refatoring implemented as part of this commit is to deserialize
and store object files directly in `mmap`-backed storage. This avoids
the need to copy bytes after the artifact is loaded into memory for each
compiled module, and in a future commit it opens up the door to avoiding
copying the text section into a `CodeMemory`. For now, though, the main
change is that copies are not necessary when loading from a precompiled
compilation artifact once the artifact is itself in mmap-based memory.
To assist with managing `mmap`-based memory a new `MmapVec` type was
added to `wasmtime_jit` which acts as a form of `Vec<T>` backed by a
`wasmtime_runtime::Mmap`. This type notably supports `drain(..N)` to
slice the buffer into disjoint regions that are all separately owned,
such as having a separately owned window into one artifact for all
object files contained within.
Finally this commit implements a small refactoring in `wasmtime-cache`
to use the standard artifact format for cache entries rather than a
bincode-encoded version. This required some more hooks for
serializing/deserializing but otherwise the crate still performs as
before.
* Review comments
* Convert compilation artifacts to just bytes
This commit strips the `CompilationArtifacts` type down to simply a list
of bytes. This moves all extra metadata elsewhere to live within the
list of bytes itself as `bincode`-encoded information.
Small affordance is made to avoid an in-process
serialize-then-deserialize round-trip for use cases like `Module::new`,
but otherwise this is mostly just moving some data around.
* Rename data section to `.rodata.wasm`
* Merge `wasmtime-jit` and `wasmtime-profiling`
This commit merges the `wasmtime-profiling` crate into the
`wasmtime-jit` crate. It wasn't really buying a ton being a separate
crate and an upcoming refactoring I'd like to do is to remove the
`FinishedFunctions` structure. To enable the profilers to work as they
used to this commit changes them to pass `CompiledModule` as the
argument, but this only works if the profiling trait can see the
`CompiledModule` type.
* Fix a length calculation
* Move wasm data/debuginfo into the ELF compilation image
This commit moves existing allocations of `Box<[u8]>` stored separately
from compilation's final ELF image into the ELF image itself. The goal
of this commit is to reduce the amount of data which `bincode` will need
to process in the future. DWARF debugging information and wasm data
segments can be quite large, and they're relatively rarely read, so
there's typically no need to copy them around. Instead by moving them
into the ELF image this opens up the opportunity in the future to
eliminate copies and use data directly as-found in the image itself.
For information accessed possibly-multiple times, such as the wasm data
ranges, the indexes of the data within the ELF image are computed when
a `CompiledModule` is created. These indexes are then used to directly
index into the image without having to root around in the ELF file each
time they're accessed.
One other change located here is that the symbolication context
previously cloned the debug information into it to adhere to the
`'static` lifetime safely, but this isn't actually ever used in
`wasmtime` right now so the unsafety around this has been removed and
instead borrowed data is returned (no more clones, yay!).
* Fix lightbeam
* Remove unnecessary into_iter/map
Forgotten from a previous refactoring, this variable was already of the
right type!
* Move `wasmtime_jit::Compiler` into `wasmtime`
This `Compiler` struct is mostly a historical artifact at this point and
wasn't necessarily pulling much weight any more. This organization also
doesn't lend itself super well to compiling out `cranelift` when the
`Compiler` here is used for both parallel iteration configuration
settings as well as compilation.
The movement into `wasmtime` is relatively small, with
`Module::build_artifacts` being the main function added here which is a
merging of the previous functions removed from the `wasmtime-jit` crate.
* Add a `cranelift` compile-time feature to `wasmtime`
This commit concludes the saga of refactoring Wasmtime and making
Cranelift an optional dependency by adding a new Cargo feature to the
`wasmtime` crate called `cranelift`, which is enabled by default.
This feature is implemented by having a new cfg for `wasmtime` itself,
`cfg(compiler)`, which is used wherever compilation is necessary. This
bubbles up to disable APIs such as `Module::new`, `Func::new`,
`Engine::precompile_module`, and a number of `Config` methods affecting
compiler configuration. Checks are added to CI that when built in this
mode Wasmtime continues to successfully build. It's hoped that although
this is effectively "sprinkle `#[cfg]` until things compile" this won't
be too too bad to maintain over time since it's also an use case we're
interested in supporting.
With `cranelift` disabled the only way to create a `Module` is with the
`Module::deserialize` method, which requires some form of precompiled
artifact.
Two consequences of this change are:
* `Module::serialize` is also disabled in this mode. The reason for this
is that serialized modules contain ISA/shared flags encoded in them
which were used to produce the compiled code. There's no storage for
this if compilation is disabled. This could probably be re-enabled in
the future if necessary, but it may not end up being all that necessary.
* Deserialized modules are not checked to ensure that their ISA/shared
flags are compatible with the host CPU. This is actually already the
case, though, with normal modules. We'll likely want to fix this in
the future using a shared implementation for both these locations.
Documentation should be updated to indicate that `cranelift` can be
disabled, although it's not really the most prominent documentation
because this is expected to be a somewhat niche use case (albeit
important, just not too common).
* Always enable cranelift for the C API
* Fix doc example builds
* Fix check tests on GitHub Actions
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
* Reimplement how unwind information is stored
This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.
Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:
* On Windows the implementation was much easier. The unwinding
information on Windows is already stored after the function itself in
the text section. This was actually slightly duplicated in object
building and in code memory allocation. Now the object building
continues to do the same, recording unwinding information after
functions, and code memory no longer manually tracks this.
Additionally Wasmtime will emit a special custom section in the object
file with unwinding information which is the list of
`RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
means that the object file has all the information precompiled into it
and registration at runtime is simply passing a few pointers around to
the runtime.
* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
section is created on-the-fly with offsets in FDEs specified as the
absolute address that functions are loaded at. This absolute
address hindered the ability to precompile the FDE into the object
file itself. I've switched how addresses are encoded, though, to using
`DW_EH_PE_pcrel` which means that FDE addresses are now specified
relative to the FDE itself. This means that we can maintain a fixed
offset between the `.eh_frame` loaded in memory and the beginning of
code memory. When doing so this enables precompiling the `.eh_frame`
section into the object file and at runtime when loading an object no
further construction of unwinding information is needed.
The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.
This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.
Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.
It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.
* Remove isa reexport from wasmtime-environ
* Trim down reexports of `cranelift-codegen`
Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.
* Fix debug tests
* Review comments
* Update wasm-smith to 0.7.0
* Canonicalize NaN with wasm-smith for differential fuzzing
This then also enables floating point executing in wasmi in addition to
the spec interpreter. With NaN canonicalization at the wasm level this
means that we should be producing deterministic results between Wasmtime
and these alternative implementations.
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build