#!/bin/bash # The following script demonstrates how to execute a machine learning inference using the wasi-nn # module optionally compiled into Wasmtime. Calling it will download the necessary model and tensor # files stored separately in $FIXTURE into $TMP_DIR (optionally pass a directory with existing files # as the first argument to re-try the script). Then, it will compile the example code in # crates/wasi-nn/tests/example into a Wasm file that is subsequently executed with the Wasmtime CLI. set -e WASMTIME_DIR=$(dirname "$0" | xargs dirname) FIXTURE=https://github.com/intel/openvino-rs/raw/main/crates/openvino/tests/fixtures/mobilenet if [ -z "${1+x}" ]; then # If no temporary directory is specified, create one. TMP_DIR=$(mktemp -d -t ci-XXXXXXXXXX) REMOVE_TMP_DIR=1 else # If a directory was specified, use it and avoid removing it. TMP_DIR=$(realpath $1) REMOVE_TMP_DIR=0 fi # Build Wasmtime with wasi-nn enabled; we attempt this first to avoid extra work if the build fails. cargo build -p wasmtime-cli --features wasi-nn # Download all necessary test fixtures to the temporary directory. wget --no-clobber $FIXTURE/mobilenet.bin --output-document=$TMP_DIR/model.bin wget --no-clobber $FIXTURE/mobilenet.xml --output-document=$TMP_DIR/model.xml wget --no-clobber $FIXTURE/tensor-1x224x224x3-f32.bgr --output-document=$TMP_DIR/tensor.bgr # Now build an example that uses the wasi-nn API. pushd $WASMTIME_DIR/crates/wasi-nn/examples/classification-example cargo build --release --target=wasm32-wasi cp target/wasm32-wasi/release/wasi-nn-example.wasm $TMP_DIR popd # Run the example in Wasmtime (note that the example uses `fixture` as the expected location of the model/tensor files). cargo run -- run --mapdir fixture::$TMP_DIR $TMP_DIR/wasi-nn-example.wasm --wasi-modules=experimental-wasi-nn # Clean up the temporary directory only if it was not specified (users may want to keep the directory around). if [[ $REMOVE_TMP_DIR -eq 1 ]]; then rm -rf $TMP_DIR fi